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A major area of interest in the study of herpes simplex virus type 1 (HSV-1)
involves the persistence of the virus within a latent state in neuronal cells of in-
fected humans. The latency-associated transcripts (LATs) are believed to play
a key role during HSV-1 latency. This review will discuss the most recent find-
ings on the involvement of the LAT region with apoptotic pathways and how
this relates to other potential functions of the LATs. Journal of NeuroVirology

(2003) 9, 285-290.
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Introduction

The LATs were first described by in situ hybridiza-
tion in 1984 (Stroop et al, 1984), and 3 years later,
they were also detected by Northern blotting (Spivack
and Fraser, 1987; Stevens et al, 1987). The LAT region
encodes for multiple transcripts, including the 8.3-kb
primary transcript and two stable introns of 2.0 kb
and 1.5 kb (Farrell et al, 1991; Zwaagstra et al, 1990).
The 2.0 kb LAT intron has been widely studied be-
cause it is the only abundant transcript found during
the latent phase of an HSV-1 infection. HSV-1 infec-
tion involves both latent and lytic phases of infection.
During a HSV-1 lytic infection, viral gene expression
occurs in a cascade that is initiated by immediate-
early gene transcription, followed by early and then
late gene transcription, as first defined in cell culture
(Honess and Roizman, 1974). The LAT gene, as well
as being expressed during latency, is expressed late in
the infectious cycle (Spivack and Fraser, 1988). Fol-
lowing lytic infection, HSV-1 infects neuronal cells
associated with the sites of primary infection and
there establishes a latent infection, which can then
reactivate when the infected cells are exposed to var-
ious forms of stress (for review, see Roizman and
Sears, 1995). The fact that all HSV isolates, whether
HSV-1 or HSV-2, encode a LAT transcript containing
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a stable intron suggests that the LATs must have some
importance to the virus. Deletion mutagenesis is fre-
quently used in experiments to determine the role of
the LATs during infection. The fact that many dele-
tion mutants have been made in the LAT gene region
and little indication of a function for the LAT gene
detected merely highlights the strengths and weak-
ness of deletion mutagenesis—it is very powerful in
locating genetic elements, but it is dependant on the
knowledge of a phenotype for the genetic element.

Neuronal survival

Programmed cell death, or apoptosis, is a controlled
event that is involved in many processes, such as tis-
sue development, immune system management, and
host defense. Apoptosis is characterized by several
morphological changes, such as chromatin conden-
sation, DNA fragmentation, membrane blebbing, cell
shrinkage, and formation of apoptotic bodies (for re-
view, see Kerr et al, 1972). Apoptosis can rid the body
of cells that carry damaged DNA or are infected by
viruses. Thus, many viruses have evolved the ability
to block apoptosis during viral infection of host cells,
including adenovirus and several herpes viruses (for
review, see Hay and Kannourakis, 2002). Recent liter-
ature has demonstrated that HSV-1 has multiple anti-
apoptotic genes, including ICP27, ICP22, US3, US5,
ICP4, and most recently the region encoding the LATs
(Aubert and Blaho, 2001).

Many viral genes appear to contribute to the ability
of HSV-1 to block apoptosis in lytically infected cells.
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The LAT expression during latency suggests that their
function would be important during latency, and pos-
sibly early reactivation. The ability to block induc-
tion of apoptosis would be extremely advantageous to
the virus during latency, specifically to aid the virus
in perpetuating its latent state.

A

An antiapoptotic function of the LATs was first sus-
pected after observations of increased neurovirulence
of a LAT mutant virus in rabbits (Perng et al, 1999). In
the next few years, several papers were published us-
ing LAT deletion mutants to characterize the involve-
ment of the LATs with apoptosis in vivo (Figure 1).
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Figure 1 Map of HSV-1 virus constructs involving genetic alterations within the LAT region. (A) Diagram of the genomic structure of
HSV-1. (B) Expanded view of the LAT region of the genome. (C) Virus mutants containing deleted sequences are denoted with hatched
boxes. Solid boxes indicate LAT sequence that was replaced ectopically between the UL37 and UL38 genes (approximate location marked
with an asterisk) found within the unique long region of the dLAT2903 mutant virus genome.



Perng et al (2000a) found significant numbers of
apoptotic neurons in rabbit trigeminal ganglia (TGs)
7 days post infection when infected with dLAT2903,
a virus with a deletion of 1828 bp from within the
LAT region. This deletion includes the LAT promoter
and the 5 coding region of the 2.0-kb stable LAT
intron, resulting in loss of the LAT RNAs (Perng
et al, 2000a). Apoptotic neurons were identified by
terminal deoxynucleotidyl transferase—-mediated de-
oxyuridine triphosphate nick-end labeling (TUNEL)
staining and poly(ADP-ribose) polymerase (PARP)
cleavage, two well-characterized techniques for de-
tecting the occurrence of apoptotic cells. In acutely
infected mouse TG sections at 3 and 6 days follow-
ing infection, Ahmed et al (2002) saw no difference
in apoptosis between a wild-type 17 +virus and a
LAT exon 1 deletion virus (17 + ASty) as measured
by the DeadEnd colorimetric assay (Promega). How-
ever, tissues infected with a larger deletion mutant
(17 + Notl-Hpal), which eliminates the LAT pro-
moter, exon 1, and the 5 end of the 2.0-kb LAT,
demonstrated increased apoptotic staining associ-
ated with HSV-1—-infected cells (Ahmed et al, 2002).

The notion that the LATs have an antiapoptotic
function has been challenged by Thompson and
Sawtell (2000, 2001). Using the 17-AH virus, which
is a LAT deletion mutant lacking the entire LAT pro-
moter and 827 bp of the 5’ end of the primary LAT
transcript, they found increased neuronal death in
mouse TGs infected with the LAT mutant virus com-
pared to those infected with the parental strain using
the contextual analysis of DNA (CXA-D) technique
(Thompson and Sawtell, 2001). However, in contrast
to the extensive apoptosis observed by Perng et al in
rabbit TGs infected with a LAT mutant, Sawtell and
Thompson found very few cells in the mouse TGs un-
dergoing apoptosis during the acute stage of infection
as measured by TUNEL staining. In addition, the cells
that were apoptotic appeared to be non-neuronal, and
possibly were infiltrating immune cells. The discrep-
ancy in the apoptosis reported by these two groups
may be partially due to the difference in the animal
models employed. Controversy also exists regarding
the ability of the tests used to detect apoptosis within
the rabbit model that was used by Perng et al (2000a)
and Thompson and Sawtell (2000).

Currently, it cannot be ruled out that the LAT pro-
motes neuronal survival through mechanisms other
than antiapoptosis. Using CXA-D, Sawtell (1997) and
Thompson and Sawtell (1997) showed LAT mutants
established latency in fewer numbers of cells isolated
from mice infected at least 30 days prior. They hy-
pothesized that the LATs promote neuronal survival
by preventing high multiplicity of infections, pos-
sibly by down-regulating viral gene expression dur-
ing productive infections. This hypothesis concern-
ing LAT down-regulation of lytic genes has also been
proposed by others (Garber et al, 1997).

To further characterize the involvement of the LATs
in apoptosis, fragments of the LAT region were tested
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for their ability to block apoptosis caused by ex-
ogenous agents in various cell lines (Figure 1). Ini-
tial studies used an expression plasmid (APALAT)
that contained 2358 bp of the LAT region, including
the region deleted within the dLAT2903 LAT mutant
virus (Perng et al, 2000a). After transfection with the
APALAT plasmid, apoptosis was induced in IMR-90
and CV-1 cells using Cg-ceramide or FB; and neuro-
2A cells with etoposide. The region of LAT expressed
by this plasmid was able to protect cells from apopto-
sis induced by any of the agents (Perng et al, 2000a).
Further experiments followed, including an in depth
analysis of the LAT regions important for protection
from a variety of apoptosis-inducing agents. Plasmids
containing at least the first 811 bp of the LAT primary
transcript along with the promoter are sufficient for
protection from apoptosis as induced by chemicals
or expression of Bax, a proapoptotic protein (Inman
et al, 2001). In another study, expression of differ-
ent regions of the 5" LAT demonstrated that the exon
1 region is more likely to be involved in protecting
cells than the stable 2.0-kb LAT intron when apop-
tosis was induced by caspase 8 expression (Ahmed
et al, 2002).

The data discussed above support two models
of neuronal survival. One model suggests that the
LATs possess antiapoptotic activity that protects
HSV-infected neurons from detection and deletion
by apoptotic signaling pathways. The other model
suggests that the LATs affect the process perhaps
by down-regulating viral gene expression during es-
tablishment of latency, leading to large numbers of
latently infected neurons. When the LATs are not
present, infected neurons will continue with a lytic
program of viral transcription, which results in the
destruction of neuronal cells.

Role of LATs in latency and reactivation

Several lines of evidence indicated that the LATs may
function to down-regulate productive infections and
suppress viral replication. In situ hybridization stud-
ies of acutely infected mouse TGs demonstrated sev-
eral fold increases in the number of cells express-
ing viral early and immediate-early genes with a LAT
mutant compared to those infected with the wild-
type (Garber et al, 1997). It has been suggested that
increases in the numbers of cells expressing lytic
genes could result in a greater immune response by
the host, leading to a decrease in the numbers of la-
tent cells (Chen et al, 2000). Furthermore, Mador et al
(1998) showed that viral replication was inhibited in
cell lines expressing the LATs, and the LATs appeared
to have a suppressive effect on the expression of viral
immediate early genes ICPO, ICP4, and ICP27.

Upon reaching sensory ganglia, the virus within
infected neurons either continues along the lytic life
cycle, leading to a productive infection, or enters a
latent state, during which most of the viral genes are
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silenced. The mechanism by which the virus enters
and maintains its latent state is unclear. There is ev-
idence that the choice of forming lytic or latent in-
fection occurs soon after entry of the neuronal cell
nucleus (Steiner et al, 1990). It has been proposed
that interaction between the virus and the neuronal
fast axonal transport mechanisms may result in inef-
ficient transfer of tegument proteins to the nucleus,
which results in inefficient up-regulation of viral
gene expression, leading to establishment of a latent
infection (Roizman and Sears, 1987). It is thought that
the LATs play a role in promoting the efficient estab-
lishment of latency (Sawtell and Thompson, 1992;
Thompson and Sawtell, 1997). Although a num-
ber of earlier studies showed that mutations in the
LAT region had no effect on the level of latent vi-
ral DNA (Sederati et al, 1989), several recent reports
reveal that LAT mutant viruses establish latency in
fewer number of cells in both mouse (Thompson and
Sawtell, 1997; Sawtell and Thompson, 1992) and rab-
bit (Perng et al, 2000b) latency models. A small dele-
tion in the LAT promoter alone can cause a reduction
in the number of latently infected cells, indicating
that the transcription of the LATs is crucial for estab-
lishing latency (Sawtell and Thompson, 1992).

The maintenance of viral latency is not well under-
stood. Because the 2.0-kb LAT intron is abundantly
present during latency, and the 3’ part of the 2.0-kb
LAT intron overlaps the viral immediate early gene
ICPO, it has been hypothesized that the LATs play
a role in maintaining viral latency by acting as anti-
sense RNAs to the immediate early gene ICPO to block
viral replication (Stevens et al, 1987). In addition, one
study showed that the LAT intron inhibits the trans-
activating activity of ICPO in a transient transfection
assay (Farrell et al, 1991). It has been long thought
that during latency, there is no transcription of the
viral genome except for from the LAT region. How-
ever, recent studies by several groups have revealed
low but detectable levels of lytic viral gene mRNA
during latency (Chen et al, 1997; Kramer and Coen,
1995). Interestingly, this study by Chen et al showed
an increase of several folds in the transcripts of viral
immediate early gene ICP4 and early gene TK dur-
ing latent infection with a LAT mutant virus (Chen
et al, 1997). However, in other studies, the level of
the ICPO transcript was not changed with the LAT

Table 1 Proposed LAT functions

mutant, arguing against the theory that the LATs act
antisense to ICPO (Chen et al, 2002). Moreover, the
increase of the ICP4 transcript was accompanied by
a decrease in anti-ICP4, a viral transcript most likely
originating from the LAT promoter (Chen et al, 1997).
Therefore, the LAT transcripts may have a role in
down-regulating the expression of ICP4, rather than
affecting ICP0. By examining a large number of in-
fected mouse TG sections, Feldman et al (2002) found
a small number of cells expressing productive cycle
genes during latency. The significance of this obser-
vation is unclear. These cells expressing lytic genes
may represent cells where the virus reactivates with
low levels of gene expression, but reactivation does
not gain momentum leading to a recrudescence (as
measured by titer of infectious virus) (Feldman et al,
2002).

In animal models, reactivation of HSV-1 can oc-
cur in response to any one of several stressful stimuli
(mouse and rabbit models) or may be spontaneous
(rabbit model). One group has suggested the pres-
ence of a LAT protein encoded from an open reading
frame (ORF) within the 2.0-kb intron region of the
LAT gene. They believe that this tightly regulated,
and thus difficult to detect, protein acts somewhat
similarly to ICPO, specifically involving lytic gene
enhancement and interaction with cellular factors
involved in promoting transcription (Thomas et al,
1999, 2002). Expression of this potential LAT pro-
tein during the early stages of reactivation could be
important for initiating lytic gene expression from la-
tent viral genomes. Previous work indicated that the
first 1.5 kb of the LAT region is necessary for spon-
taneous reactivation in rabbits (Perng et al, 1996),
but the first 811 bp can partially restore this pheno-
type to an HSV-1 LAT-null mutant (Drolet et al, 1999).
Interestingly, these LAT sequences correspond to re-
gions used in expression plasmids to demonstrate the
LAT’s ability to convey protection from apoptotic-
inducing agents (Inman et al, 2001). The latency-
related gene of bovine herpes virus 1, which also has
been shown to possess antiapoptotic characteristics,
can recover the spontaneous reactivation phenotype
ofa LAT-null mutant (Perng et al, 2002). These associ-
ations lead to speculation of a correlation between the
LATs’ antiapoptotic ability and the role of the LATs
in reactivation of the virus, although the apoptotic

Role of LAT

Mechanism

Evidence

Neuronal survival Antiapoptotic

Modulate acute infection

Immune modulation
Antisense to ICP0
Antisense to ICP4

Maintenance of latency
Reactivation

Antiapoptotic

LAT-encoded protein promotes
lytic gene transcription

Perng et al, 2000; Ahmed et al, 2002
Garber et al, 1997; Mador et al, 1998
Chen et al, 2000

Farrell et al, 1991; Stevens et al, 1987
Chen et al, 1997

Thomas et al, 1999; Thomas et al, 2002

Inman et al, 2001




mapping data would suggest that the LAT exon rather
than the intron is the functional molecule.

In summary, at present there are two main hypothe-
ses regarding the role of the LATs in neuronal sur-
vival: (1) the LATs promote cell survival by prevent-
ing infected neurons from undergoing apoptosis or
(2) the LATs may down-regulate viral gene expres-
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