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Two human alpha-herpesviruses, herpes simplex virus (HSV)-1 and varicella
zoster virus (VZV), account for the most frequent and serious neurologic dis-
ease caused by any of the eight human herpesviruses. Both HSV-1 and VZV be-
come latent in ganglia. In this review, the authors describe features of latency
for these viruses, such as distribution, prevalence, abundance, and configura-
tion of viral DNA in latently infected human ganglia, as well as transcription,
translation, and cell type infected. Studies of viral latency in animal models
are also discussed. For each virus, remaining questions and future studies to
understand the mechanism of latency are discussed with respect to preven-
tion of serious cutaneous, ocular, and neurologic disease produced by virus
reactivation. Journal of NeuroVirology (2003) 9, 194–204.
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Herpes simplex virus-1

Introduction
Herpes simplex virus (HSV) is a ubiquitous human
pathogen. Primary infection is usually acquired in
childhood and is most often asymptomatic, after
which virus becomes latent in neurons of cranial
nerve ganglia (HSV-1) or sacral ganglia (HSV-2). Here,
we focus exclusively on HSV-1. By age 20 to 25 years,
approximately 80% of adults in the United States
are seropositive, and in many countries in Europe,
Africa, and the Far East, the prevalence of antibody to
HSV-1 exceeds 95% in adults age 20 to 40. Reactiva-
tion from ganglia produces cold sores or fever blisters
in the mouth or on the lip, less often infections of the
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eye (herpes keratitis), and rarely encephalitis. Multi-
ple vaccines have been produced based on wild-type
virus, inactivated (killed) or live virus, viral subunit,
or genetically engineered virus, but none has met ac-
cepted standards for licensure.

Unlike varicella zoster virus (VZV), which pro-
duces disease only in humans, HSV causes disease
and becomes latent in ganglia of rabbits and mice af-
ter experimental inoculation by various routes. Fur-
ther, virus can be induced to reactivate by various
external stimuli. Thus, studies of HSV latency in hu-
mans have been paralleled by models of latency in
different animals.

The HSV genome
HSV-1 is a double-stranded DNA virus that is 152 kb
in size. The entire 152,260-bp genome has been se-
quenced (accession number X14112) and consists of
two covalently linked components, a unique long
and a unique short segment, each bracketed by in-
verted repeat sequences. Thus, there are four pos-
sible isomers of the viral DNA molecule. There are
about 90 unique transcriptional units, at least 84 of
which encode proteins. The genes have been grouped
into three general kinetic classes: immediate-early,
early, and late. An updated assignment of function to
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various HSV genes as well as the structure of virions
is detailed by Roizman and Knipe (2001).

Distribution and prevalence of HSV DNA
in latently infected human ganglia
HSV-1 latency appears to be restricted to cranial
nerve ganglia, as manifest by spontaneous, often re-
current, outbreaks of herpetic vesicles on the mouth,
or by rescue of HSV-1 from explants of human trigem-
inal (Bastian et al, 1972; Baringer and Swoveland,
1973), nodose and vagal (Warren et al, 1978), and cil-
iary (Bustos and Atherton, 2002) ganglia after death.
HSV-1 sequences have also been found in human
thoracic ganglia (Mahalingam et al, 1992) and brain
(Fraser et al, 1981; Baringer and Pisani, 1994), but
virus has never been recovered by explantation or
cocultivation of these tissues with indicator cells.
Most humans have latent HSV-1 in their trigeminal
ganglia (Mahalingam et al, 1992).

Abundance of HSV DNA in latently infected ganglia
Two different techniques have revealed that the vi-
ral DNA copy number during latency in mice ranges
from less than 10 to more than 1000 copies per cell
(Sawtell, 1997; Chen et al, 2002). In the mouse, both
the strain and dose of virus has been shown to influ-
ence the copy number in latently infected neurons
(Sawtell et al, 1998).

Configuration and physical state of HSV-1 DNA
in latently infected ganglia
Initial studies of HSV-1 DNA configuration in latently
infected mouse ganglia revealed two copies of the
virion DNA joint fragment but no free ends because
the termini were joined, indicating that the HSV-1
genome is endless or circular (Rock and Fraser, 1983,
1985). Efstathiou et al (1986) confirmed the detec-
tion of “endless” HSV-1 DNA in latently infected
mouse ganglia and also found the same viral DNA
configuration in human trigeminal ganglia. Subse-
quent analysis of gradient fractions after buoyant den-
sity centrifugation in CsCl of latently infected mouse
ganglia revealed that most HSV-1–specific DNA is ex-
trachromosomal (Mellerick and Fraser, 1987); there is
no evidence that HSV-1 DNA integrates into the host
genome.

HSV transcription in latently infected ganglia
The first proof that HSV-1 is transcribed in latently
infected ganglia (Stroop et al, 1984) was followed by
the identification of a latency-associated transcript
(LAT) that mapped to repeat sequences flanking the
unique long region (Stevens et al, 1987; Spivack and
Fraser, 1987). The full-length LAT is 8.3 kb and is a
low-abundance transcript found exclusively in neu-
rons of latently infected ganglia. Processing of the
full-length transcript results in abundant accumu-
lation of 2.0- and 1.5-kb introns, also found in the

nuclei of neurons. Another 1.4-kb species appears to
result from additional splicing of the 2.0-kb intron.
In both mouse and rabbit models, LAT-deficient mu-
tants can become latent but reactivate with decreased
efficiency. Recently, some larger LAT-deletion mu-
tants have been shown to be more virulent during
acute infection; interestingly, the number of latently
infected neurons is reduced two-fold (Perng et al,
2000a; Thompson and Sawtell, 2001). One possibility
is that the increase in virulence may reflect the ability
of LAT transcripts to protect neurons from apoptosis
(Perng et al, 2000b; Ahmed et al, 2002); similarly,
a block in LAT function could affect the ability of
virus to replicate in and kill cells (Zhu et al, 1999;
Thompson and Sawtell, 2001). However, LAT mu-
tants with smaller deletions exhibit wild-type viru-
lence or slightly decreased virulence in mice during
acute infection (Bloom et al, 1994, 1996). Note that
these LAT recombinants lacking the core promoter
and/or regions within the first 600 bp of the 5′ exon
reactivate with decreased efficiency in both mouse
and rabbit models. Further studies are needed to de-
termine whether the primary effect of LATs on reacti-
vation is quantitative (i.e., LAT expression results in
fewer latently infected neurons) or qualitative (i.e.,
expression of LAT directly facilitates reactivation).

HSV proteins expressed in latently infected ganglia
Unlike many other herpesviruses, there is no indica-
tion that any HSV proteins are made during latency.
Although evidence exists for various functional roles
of LATs, there is no direct evidence that LATs either
encode a protein or that any putative LAT open read-
ing frames (ORFs) are translated during latency. Two
ORFs from the LAT region have the potential to be
translated during lytic infection (Perng et al, 2002;
Thomas et al, 2002). The first ORF is located within
the 2.0-kb intron and when stably integrated into ND7
cells, enhances viral yields after infection in vitro. Al-
though this ORF is likely to have some function dur-
ing acute infection, a viral recombinant with a mu-
tation in this ORF did not affect establishment of, or
reactivation from, latency. The second proposed ORF
(AL) is encoded on an RNA that is antisense to the 5′
exon of LAT and overlaps with the 5′ transcriptional
start site and a portion of the LAT promoter. The AL
ORF has been suggested to encode a proapoptotic
function, and its deletion slightly decreases virulence
(Perng et al, 2002). The transcript encoding this ORF
can only be detected during productive infection in
tissue culture, but not in latently infected rabbit gan-
glia. Overall, it seems likely that the AL ORF, if it
can be shown to be translated, functions during acute
infection. Finally, two additional ORFs, ORF O and
ORF P, have been shown to be expressed at low lev-
els in tissue culture under conditions where infected
cell protein 4 (ICP4) is not expressed (Lagunoff, 1995;
Lagunoff and Roizman, 1994). Although these ORFs
may be translated during latency, no latent protein
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has been detected, and these ORFs are not required
for establishment of latency (Randall et al, 2000).

Cell type infected in latently infected ganglia
Neurons are the exclusive site of HSV-1 latency, not
only in human ganglia, but also in mouse and rabbit
models. Studies employing either in situ polymerase
chain reaction (PCR) or single-cell PCR analysis of
latently infected mouse ganglia have revealed that
1% to 30% of neurons contain HSV-1 DNA, a vari-
ation that may reflect differences in infection con-
ditions and strain of virus used (Mehta et al, 1995;
Sawtell, 1997). LAT-positive neurons comprise about
one third of the total neurons in latently infected gan-
glia. Overall, during latency, there are populations of
neurons in which LAT expression is abundant, com-
pared to neurons that do not express detectable LAT.

Ganglionic neurons are classified as large, medium,
or small. Although the size groups might repre-
sent a heterogeneous population comprised of dif-
ferent functional classes of neurons, it remains un-
known whether HSV-1 latency favors a particular
size neuron. However, immunohistochemical anal-
ysis of latently infected mouse trigeminal ganglia
has revealed that LAT-positive neurons tend to colo-
calize with neurons expressing monoclonal markers
SSEA3 and A5 (Margolis et al, 1992; Yang et al, 2000).
SSEA3 neurons comprise a heterogeneous popula-
tion of all sizes that includes up to 40% of neurons
in the ophthalmic region of the trigeminal ganglion
(Margolis et al, 1992; Robertson et al, 1991). In con-
trast, neurons that stain positive for the monoclonal
antibody marker KH10 tend to colocalize with neu-
rons that support acute viral replication. Many A5-
and SSEA3-positive populations are also positive for
the high-affinity nerve growth factor (TrKa), whereas
KH10-positive cells are almost always TrKa-negative.
This supports a potential link between nerve growth
factor responsiveness and the permissiveness of a
neuron for establishment of latent infection. Finally,
because 30% of latently infected neurons do not ex-
press TrKa, multiple cell proteins are likely to play a
role in regulation of HSV latency.

Evidence for genetic control of viral transcription
Compared to LAT expression during latency, lytic
gene expression is suppressed (Kramer and Coen,
1995), and recent data suggest that the low num-
bers of lytic transcripts detected in pooled la-
tent ganglia by reverse transcriptase (RT)-PCR may
be attributed to an occasional reactivating neuron
(Feldman et al, 2002). Further, various cellular pro-
moters such as that for phosphoglycerate kinase
(PGK) inserted into the HSV genome are silent dur-
ing latency (Lokensgard et al, 1994). One interpre-
tation of the collective data is that a general mech-
anism suppresses HSV expression during latency.
Epigenetic modification of DNA or chromatin is a
conservative, but reversible, means of transcription-

ally marking genes or large regions of cellular chro-
mosomes for transcriptional repression. One known
epigenetic mechanism used by the beta- and gamma-
herpesviruses (and well as for cellular genes) is DNA
methylation. Although early studies suggested that
HSV genomes maintained in a quiescent state in lym-
phocytes were methylated (Youssoufian et al, 1982),
and that treatment with 5-azacytidine, which pro-
motes hypomethylation, enhanced reactivation in ex-
planted ganglia from guinea pigs latently infected
with HSV-2 (Stephanopoulos et al, 1988), later stud-
ies using higher resolution assays to examine the
methylation status of HSV genomes isolated from
latently infected nervous tissue have indicated that
DNA methylation is not used by HSV (Dressler et al,
1987; Tran, McAnany, and Bloom, personal commu-
nication). One possible explanation for the earlier
suggestion of the involvement of methylation in HSV
latency is that the quiescent infection of lymphocytes
does not mimic the state of viral latency in neurons.
The observation that 5-azacytidine augments reacti-
vation is difficult to interpret, because it is toxic and
might enhance reactivation as a result of increased
cell stress. Moreover, the hypomethylating activity of
this agent is exerted during active replication. Rather
than DNA methylation, recent data suggest that HSV
may exploit an epigenetic mechanism involving the
differential deposition of histones with different tail
modifications. Chromatin immunoprecipitation of
DNA isolated from latently infected mouse dorsal
root ganglia shows that the DNA polymerase gene
is associated with H3 K9 methyl histones, a marker
of transcriptionally repressed chromatin (heterochro-
matin), whereas the LAT promoter is associated with
H3 lysine 3,14-diacetyl histones, a marker of tran-
scriptionally permissive chromatin (euchromatic re-
gions) (Kubat and Bloom, personal communication).
These observations suggest that the HSV genome
is ordered into transcriptional domains where the
lytic genes are epigenically suppressed by a histone-
mediated mechanism, whereas regulatory regions in
the repeat regions of the genome are maintained in
a state accessible to transcriptional activation. Be-
cause the repressive effects of histone modifications
can be reversed in a replication-independent man-
ner (unlike DNA methylation), alpha-herpesviruses
might be more likely to use histone modification dur-
ing latent infection in neurons because it does not
involve episomal replication. Additional structural
studies of chromatin may shed light on the regulatory
paradigms that enable silencing of the HSV genome
and subsequent reversible reactivation.

Model systems of HSV-1 latency
Mouse models: Within 21 days after infection with
HSV-1 on the eye or footpad of mice, infectious virus
and lytic transcripts are not detectable in trigeminal
or dorsal root ganglia. Nonetheless, these ganglia are
latently infected, as evidenced by the development
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of a typical HSV cytopathic effect in indicator cells
mixed with small pieces of finely minced ganglia and
incubated at 37◦C for 7 to 10 days. Typically, infec-
tious virus can be recovered from 90% to 100% of
ganglia (Stevens and Cook, 1971). Analysis of latently
infected mouse ganglia has revealed viral DNA in
1.9% to 24% of neurons without any decrease over
time (Sedarati et al, 1993; Sawtell, 1997). Similar
numbers of neurons have been shown to contain HSV
in latently infected human ganglia (Cai et al, 2002).
The mouse model has also demonstrated that HSV-
1 LAT mutants become latent but reactivate with re-
duced efficiency (Sawtell and Thompson, 1992; Devi-
Rao et al, 1994).

Rabbit models: Ocular infection of the rabbit with
HSV-1 produces latency that mimics the infection of
mice and humans. In rabbits, reactivation can be in-
duced and infectious virus can be recovered at the site
of primary infection. The two commonly used reac-
tivation models are the spontaneous model (Nesburn
et al, 1967) and the adrenergic induction model (Hill
et al, 1986). In the spontaneous model, eye swabs are
examined for infectious virus 14 to 28 days after pri-
mary infection. The induced reactivation model uses
iontophoresis of epinephrine (or another adrenergic
agent) applied to the rabbit eye to reactivate virus. Af-
ter infection with the 17+ or McCrae strain of HSV-1,
epinephrine induces reactivation (>28 days post in-
fection [p.i.]) in 70% to 100% of rabbit eyes. Note that
although LAT mutants show a reduced ability to be-
come latent in mice, such a restriction has not been
observed in rabbits (Bloom et al, 1994), although LAT
mutants with large deletions are less efficient at es-
tablishing latency (Perng et al, 2000a). Moreover, al-
though LAT promoter mutants and mutations within
the first 600 to 1500 bp of the LAT all demonstrate
reduced reactivation in both the rabbit and mouse, a
number of smaller deletions within the 5′ exon of LAT
exhibit reduced reactivation only in rabbits (Bloom
et al, 1996; Perng et al, 1996; Loutsch et al, 1999).
Another divergence relates to virulence; when a par-
ticular region of the 5′ exon of LAT is deleted, viru-
lence is increased in the rabbit, but decreased in the
mouse (Perng et al, 2001). The mechanistic bases for
these differences are unknown; but if this region of
LAT influences the balance between establishment
of latency and the potential to reactivate, it is possi-
ble that subtle differences between mouse and rabbit
neuronal factors determine the extent of virulence.
The model that most accurately reflects the human
situation remains to be determined.

In vitro models: A challenge in studying HSV la-
tency at the molecular level has been the difficulty in
developing an in vitro model that mimics the in vivo
state. Two models predominate. The first involves dif-
ferentiated rat PC-12 pheochromocytoma cells prop-
agated in the presence of nerve growth factor (NGF)
and infected with high multiplicities of HSV (50 to

100 plaque-forming unit [pfu]/cell) (Danaher et al,
1999; Su et al, 1999). Surviving PC-12 cells harbor
latent HSV genomes, predominately in circular form,
in the absence of detectable lytic gene expression.
Although these cultures can be induced to produce
infectious virus by cocultivation with other cell lines,
concerns exist over whether the apparent “quiescent”
infection is truly devoid of a low level of a “smolder-
ing” virus infection. The second system uses rat or
mouse dorsal root ganglionic neurons infected with
high multiplicities of HSV and maintained in tissue
culture in the presence of acyclovir and NGF (Wilcox
and Johnson, 1988). After days of such treatment, the
cells are propagated in tissue culture medium con-
taining NGF but not acyclovir. A spontaneous HSV
cytopathic effect does not develop, and most cells in
culture accumulate LAT. Virus reactivates if NGF is
removed from the medium, or if the cells are treated
with forskolin, an inducer of cAMP (Colgin et al,
2001), or with trichostatin A, an inhibitor of histone
deacetylases (Arthur et al, 2001). Interestingly, with-
drawal of NGF or absence of treatment with forskolin
seems to result in the disappearance of the LAT in-
tron from the nucleus (Colgin et al, 2001), suggesting
that LAT may act as a dynamic suppressor of lytic
gene expression, and that silencing of LAT expression
is required to promote reactivation. However, it re-
mains unclear whether this down-regulation of LAT
expression occurs in vivo, and if so, how it might af-
fect reactivation in the two thirds of latently infected
neurons that do not express LAT.

Future directions
Although many molecular details of HSV latency
have been established in the 30 years since the first
explant cocultivation of latent HSV was reported,
central questions remain about the mechanisms in-
volved. Chief among these are (1) Which aspects of
establishment of latency are dictated by the genotype
of the virus, the phenotype of the neuron, or the com-
petency of local immunity? (2) What is the biological
impact of viral functions that regulate apoptosis, in-
cluding those that map to the LAT region, on latency
and reactivation? (3) Is latency maintained by a pas-
sive process resulting from the lack of transcriptional
activation, or does it involve a dynamic repression of
lytic viral functions? If the latter is the case, then is
part of this repression dictated by LAT acting as a
chromatin modeling RNA such as XIST or rox? and
(4) What are the molecular events that signal the tran-
sition from stress into productive viral reactivation,
and what is the first viral factor that responds to this
signal—is it VP16, ICP0, or ICP4? Does LAT func-
tion in this process as an activator of the lytic cycle,
or does repression of LAT during reactivation allow
lytic functions to be activated? Answers to these ques-
tions await further detailed molecular analyses of the
series of events governing reactivation in the complex
architecture of sensory nerve ganglia.
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Varicella zoster virus

Introduction
VZV is a ubiquitous human pathogen. Primary in-
fection produces varicella (chickenpox), after which
virus becomes latent in neurons of cranial nerve, dor-
sal root, and autonomic ganglia along the entire neu-
raxis. Reactivation, which may occur decades later,
results in zoster (shingles). Unlike HSV-1, in which
primary infection is often asymptomatic, varicella
is characterized by malaise, fever, and an extensive
vesicular rash (Abendroth and Arvin, 2000). A sero-
logic study of 1201 US military basic trainees indi-
cated that 95.8% had been exposed to virus (Jerant
et al, 1998). Chickenpox is not always mild; in 1994,
an epidemic of 292 cases of chickenpox in rural In-
dia resulted in 3 deaths (Balraj and John, 1994), and
in England, where VZV vaccination is not manda-
tory, about 25 people die from chickenpox every year
(Rawson et al, 2001). Although VZV vaccine effec-
tively prevents varicella (Weibel et al, 1984; Gershon
et al, 1992; Arvin and Gershon, 1996), breakthrough
varicella (Takayama et al, 1997) and virus reactiva-
tion still occur (Krause and Klinman, 2000; LaRussa
et al, 2000).

The study of VZV latency is fraught with obsta-
cles. VZV is exclusively a human pathogen and no
animal model exists in which virus latency and reac-
tivation can be studied. VZV is latent only in ganglia,
tissue not accessible during life, so that analysis of
latent VZV has been restricted to human ganglia ob-
tained at autopsy. Nonetheless, in the past 20 years,
thousands of human ganglia have been analyzed by
multiple laboratories. Below we review findings on
the physical state of VZV nucleic acid and protein in
latently infected human ganglia, including studies of
latency in a primate model produced by simian vari-
cella virus (SVV). We conclude with a brief discus-
sion of the importance of studying varicella latency
to prevent the serious neurological complications of
VZV reactivation.

The VZV genome
Analysis of serially propagated VZV (Ecker et al,
1984; Hayakawa et al, 1986) and multiple clinical
isolates (Hawrami et al, 1996; Muir et al, 2002) has
revealed that the virus genome is a stable molecule
with little geographic variation. The 124,884-bp VZV
genome has been sequenced, and computer-assisted
analysis has identified 71 ORFs numbered consec-
utively from the leftward end of the virus genome
(accession numbers X04370, M14891, and M16612;
Davison and Scott, 1986). ORFs 42 and 45 are be-
lieved to be exons from the same processed tran-
script and ORFs 62, 63, and 64 are repeated (ORFs 71,
70, and 69); thus there are 68 predicted unique VZV
genes. However, recent analysis of the VZV genome
has revealed novel transcripts. VZV gene 33.5 is
3′-coterminal with ORF 33 and encodes the virion

assembly protein processed by the ORF 33 proteinase
(Preston et al, 1997; McMillan et al, 1997). The novel
VZV ORF 9A maps within ORF 8 (Ross et al, 1997).
Mutation of both ORF 8 and ORF 9A yields virus with
impaired syncytia formation and reduced growth in
tissue culture. ORF (S/L) is the first demonstrated
spliced VZV transcript and maps to the leftward end
of the virus genome (Kemble et al, 2000). The 21-kDa
cytoplasmic ORF (S/L) protein is expressed during
lytic virus growth (in vitro and in vivo), and null mu-
tations of this gene yield virus with altered cell ad-
hesion characteristics. Overall, there are 70 unique
VZV genes that have been identified by computer or
experimental analysis.

Distribution and prevalence of VZV DNA
in latently infected human ganglia
Unlike HSV-1 where latency is mostly restricted to
cranial nerve ganglia, VZV is latent in those ganglia
(Gilden et al, 1983; Hyman et al, 1983), as well as
in dorsal root (Mahalingam et al, 1990) and auto-
nomic nervous system ganglia (Gilden et al, 2001).
VZV DNA is present in ganglia of more than 90% of
normal adults (Mahalingam et al, 1992).

Abundance of viral DNA in latently infected
human ganglia
Initially, semiquantitative PCR detected 6 to 51
copies of VZV DNA per 100 ng of total ganglionic
DNA (Mahalingam et al, 1993). Later, real-time, quan-
titative fluorescent PCR detected 258 copies of VZV
DNA per 105 ganglionic cells (Pevenstein et al, 1999).
Assuming the presence of 15.6 pg of DNA per hu-
man cell, as well as the presence of 8.1× 104 neu-
rons, in which latent VZV resides predominantly, and
8× 106 non-neuronal cells per trigeminal ganglion,
then there are 4 to 40 copies (Mahalingam et al, 1993)
and 20 copies (Pevenstein et al, 1999) of VZV DNA
in each latently infected trigeminal ganglionic neu-
ron. Recent real-time PCR analysis of left and right
trigeminal ganglia from 17 individuals revealed no
difference between the left and right trigeminal gan-
glia of the same individual in VZV DNA copy num-
ber, but a wide variation of 19 to 3145 copies of VZV
DNA per latently infected neuron (Cohrs et al, 2000).
Such a large range is likely to reflect the uneven
amount of circulating VZV encountered during pri-
mary infection. For example, during acute varicella,
the virus load in blood varies substantially from 200
to 5000 copies per 150,000 peripheral blood mononu-
clear cells, 100 to 1000 copies per milliliter whole
blood, and 100 to >10,000 copies per milliliter serum
(Mainka et al, 1998; de Jong et al, 2000). The dif-
ferent amount of latent VZV DNA among individu-
als is not surprising, because humans are outbred,
and decades during which uncontrolled stimuli oc-
cur separate primary infection from collection and
analysis of ganglia after death. Interestingly, the latent



HSV-1 and VZV latency in ganglia
BM Mitchell et al 199

DNA copy number of both VZV and HSV-1 parallels
the amount of initial infecting virus.

Configuration of VZV DNA in latently
infected ganglia
The configuration of the latent VZV genome has been
determined by quantitative PCR analysis of human
ganglionic DNA using two different primer sets and
exploiting the rare (5%) isomerization of the unique
long segment of the virus DNA. The first primer
set corresponded to the termini of the virus DNA
expected to yield a PCR product if the viral DNA
molecule was circular, concatameric (end-to-end), or
if the unique long region of the VZV genome was in-
verted. The second primer set was located internally
and expected to amplify VZV DNA of any configura-
tion. After PCR amplification, the latent VZV DNA
copy number with both primer sets was the same
(ratio 1:1), compared to a 15:1 ratio in DNA extracted
from VZV virions (Clarke et al, 1995). The simplest
interpretation of the data is that latent VZV DNA ex-
ists as a circular episome, similar to the structure of
latent HSV-1 DNA (Rock and Fraser, 1985; Efstathiou
et al, 1986).

VZV transcription in latently infected
human ganglia
Based on in situ hybridization (ISH) studies com-
bined with sequencing, four transcripts correspond-
ing to VZV genes 21, 29, 62, and 63 have been iden-
tified in latently infected human ganglia. Initially,
transcripts corresponding to VZV genes 29 and 62
were found on Northern blots prepared from the
poly[A]-selected RNA extracted from hundreds of
human trigeminal ganglia (Meier et al, 1993). Later
studies used reverse Northern blot analysis in which
cDNA probes were synthesized from latently infected
human ganglionic RNA and hybridized to restriction
endonuclease fragments spanning 95% of the virus
genome. These methods provided the first identifi-
cation of VZV gene 21 transcripts (Cohrs et al, 1994,
1995), confirmed the earlier detection of VZV gene 29
and 62 transcripts by Meier et al (1993), and identi-
fied transcripts corresponding to VZV gene 63 (Cohrs
et al, 1996). Interestingly, although the earliest stud-
ies of VZV transcription during latency did not detect
VZV gene 63 transcripts, it appears to be the most
abundantly transcribed VZV gene identified to date
(Cohrs et al, 2000). Finally, ISH studies (Kennedy
et al, 1999, 2000) have confirmed the presence in
human ganglia of transcripts corresponding to VZV
genes 21, 29, 62, and 63, and have also suggested that
VZV genes 4 and 18 may be transcribed, but the latter
findings need to be confirmed by sequencing.

VZV proteins expressed in latently infected
human ganglia
Although immunohistochemical staining of normal
human ganglia with polyclonal antiserum directed
against VZ virions did not reveal any VZV-specific

proteins, use of a monospecific polyclonal anti-
serum directed against VZV ORF 63 protein did
identify this protein in the cytoplasm of neurons
(Mahalingam et al, 1996). Another study also de-
tected proteins in the cytoplasm of neurons corre-
sponding not only to VZV ORF 63, but also to VZV
ORFs 4, 21, 29, and 62 (Lungu et al, 1998). In the
same report, these VZV proteins were shown to be
predominantly nuclear during productive infection
(zoster), and the investigators speculated that cy-
toplasmic location might provide a mechanism to
maintain VZV in a latent state, namely, by restricting
regulatory proteins from the nucleus. This intrigu-
ing study, if confirmed, would suggest a mechanism
by which latency is maintained in the presence of
an efficient transactivator (e.g., IE62) of virus gene
transcription.

Cell type infected in latently infected human ganglia
The first ISH studies detected VZV nucleic acid
in neurons of human ganglia (Hyman et al, 1983;
Gilden et al, 1987). A later ISH by Croen et al (1988)
suggested that VZV was latent exclusively in non-
neuronal satellite cells, although a consultant neu-
ropathologist at the University of Colorado viewed
Croen’s ISH figures as indicative of virus presence
only in neurons (Gilden and Kennedy, personal com-
munication). Using ISH, Lungu et al (1995) detected
VZV DNA in neurons and multiple types of non-
neuronal cells, a finding that has not been confirmed.
The use of PCR combined with ISH to study VZV
latency has revealed VZV DNA exclusively in the cy-
toplasm of neurons, perhaps due to leakage of viral
DNA from the nucleus during the rigors of PCR am-
plification in situ (Dueland et al, 1995). In two fur-
ther carefully controlled studies, various groups in-
vestigating VZV latency submitted latently infected
human ganglia to a single laboratory for analysis by
ISH and PCR-ISH; the findings of both studies in-
dicated that VZV was latent predominantly, if not
exclusively, in neurons (Kennedy et al, 1998, 1999).
To circumvent some of the problems associated with
ISH (reviewed in Mahalingam et al, 1999), we ap-
plied a modification of contextual analysis technol-
ogy (Sawtell, 1997) to the analysis of dissociated
human trigeminal ganglia. Nearly all VZV DNA was
detected in ganglionic cells >20 µm in diameter
(neurons); some VZV DNA was also found in cells
<10 µm in diameter (either small neurons or non-
neuronal cells), again indicating that VZV is latent
primarily, if not exclusively, in neurons (LaGuardia
et al, 1999). Overall, the neuronal site of latent VZV
DNA appears to be the same as for other alpha-
herpesviruses, including HSV-1 (Stroop et al, 1984;
Stevens et al, 1987), HSV-2 (Mitchell et al, 1990;
Croen et al, 1991), bovine herpesvirus-1 (Bratanich
et al, 1992; Kutish et al, 1990), equine herpesvirus
(Borchers et al, 1997), and pseudorabies virus (Priola
et al, 1990).
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Models of varicella latency
Unlike HSV-1, VZV does not reactivate from ganglia
after experimental infection of primates and multi-
ple species of rodents. Nevertheless, some impor-
tant information has been acquired from analysis of
ganglia after experimental infection of rodents. Af-
ter footpad inoculation of rats with VZV, abundant
VZV gene 63 protein was found in lumbar ganglia
harvested 1 month later (Debrus et al, 1995). Viral
protein was found exclusively in neurons, both in
the nuclei and cytoplasm of infected cells. A sub-
sequent ISH study of the same rat model detected
VZV gene 63 DNA in 5% to 10% of neurons and
VZV RNA in neurons and non-neuronal cells at an
approximate ratio of 3:1; immunocytochemistry re-
vealed VZV gene 63 protein exclusively in neurons,
both in the nuclei and cytoplasm of latently infected
cells (Kennedy et al, 2001). The presence of VZV pri-
marily in neurons, with abundant expression of VZV
gene 63 nucleic acid and protein, parallels findings
in human ganglia.

Finally, we recently simulated natural varicella in-
fection by exposing four SVV-seronegative monkeys
to monkeys that had been inoculated intratracheally
with SVV. The four naturally exposed monkeys de-
veloped mild varicella 10 to 14 days later, and skin
scrapings taken at the time of rash contained SVV
DNA. Analysis of multiple ganglia, liver, and lung ob-
tained on sacrifice of the four monkeys 6 to 8 weeks
after resolution of rash revealed SVV DNA in gan-
glia at multiple levels of the neuraxis, but not in lung
or liver of any of these monkeys (Mahalingam et al,
2002). This animal model provides an experimental
system to gain information on varicella latency with
direct relevance for the human disease.

Neurological disease after reactivation of VZV
The neurological complications after VZV reactiva-
tion are serious and often life-threatening. VZV was
identified as the causal agent in 29% of 3231 cases
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