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Herpes simplex virus (HSV) establishes a latent infection in the human
peripheral nervous system and can cause recurrent disease by reactivation.
Intensive effort has been directed in recent years to unveil the molecular, cel-
lular and immune mechanisms, as well as the virus-host interactions associ-
ated with latent HSV infection. The aim of this review is to summarize cur-
rent knowledge regarding the site of latent infection, the molecular phenome-
na of latency, and the mechanisms of the various stages of HSV-1 latent
infection in the nervous system, relating them where possible to the human
situation. Specifically, the following biological questions are addressed: (1)
How does this lytic virus survive in the nervous system and why can it estab-
lish a lifelong latent infection in nerve cells? (2) What advantage is conferred
on HSV by establishing latent infection in nervous tissue? (3) What can be
gathered from the accumulated knowledge on latency about the pathogenesis
of herpes simplex encephalitis?
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Introduction

The ability of herpes simplex virus type 1 (HSV-1)
to colonize and establish latent infection in the
human nervous system has attracted much scientif-
ic interest ever since Goodpasture postulated in
1929 that the recurrent mucocutaneous disease
stems from a dormant viral state in the peripheral
sensory ganglia (PSG). Half a century later, Stevens
and colleagues (Stevens and Cook, 1971; Cook and
Stevens, 1973) as well as other groups (Bastian et al,
1972; Baringer and Swoveland, 1973) established
the validity of this hypothesis by isolating HSV
from human PSG. Recent years have witnessed a
plethora of data on the molecular concomitants of
HSV latency (for reviews see Roizman and Sears,
1987; Stevens, 1989; Steiner and Kennedy, 1993)
and the information so gathered in this field has
now paved the way for the use of HSV-derived vec-
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tors as vehicles for gene therapy in neurological dis-
orders (Kennedy and Steiner, 1993). While it is pos-
sible that there are sites of extraneural HSV latency
(Clements and Subak-Sharpe, 1988; Abgharis and
Stulting, 1988; Stevens, 1978; Kaye et al, 1991), it is
widely accepted that HSV latency is an almost
exclusive feature of nervous tissue.

The aim of this review is to summarize current
knowledge on HSV-1 latent infection and to exam-
ine its relevance to human disease. Specifically, we
will address the following questions: (1) By what
mechanisms does this lytic virus survive in the ner-
vous system and how can it establish a lifelong
latent infection in nerve cells since the usual out-
come of most viral infections is either destruction of
the host, or elimination of the viral pathogen from
the organism? (2) What is the relevance of the accu-
mulated experimental data on latency to the patho-
genesis of HSV-1-induced disease in humans? (3)
What advantage is conferred on the virus by estab-
lishing latency in nervous tissue? In this rather con-
troversial field, considerable differences may exist
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Figure 1 Herpes simplex virus type 1 (HSV-1)} genome organization, location and structure of the viral latency-associated gene expres-
sion. (a) The HSV-1 genome illustrating the unique long (U;) and unique short (U) regions bounded by the terminal and internal repeat
regions (TR and IR respectively). (b) Detailed map of BamHI restriction fragments B and SP. The approximate location of the immediate
early (ICP4, ICPO and ICP27) and other (y-34.5, UL55 and UL56) genes’ mRNAs clustered in this fragment of the viral genome are
marked by arrows that indicate their transcription orientation. The region of the viral genome that is transcriptionally active during
HSV-1 latent infection and is positive by in situ hybridization is shaded. The darkly shaded region between Pstl and Mlul restriction
sites gives rise to two overlapping HSV-1 LATs. Also denoted are the location of the internal repeat long (IR;) and the border between
the long and short fragments of the genome. (c) Map and structure of the LATs. The 5’ and 3’ ends of the LATs, and the location of the

open reading frames (ORFs) are illustrated.

in the individual researcher’s interpretation of some
of the data. While attempting to provide an
overview of HSV latency, we have inevitably formu-
lated our own views which do not necessarily con-
form with current established dogmas.

Background

Definition of latency

Latent infection is defined as the presence of the
viral genome in the tissue without production of
infective viral particles. However, the virus main-
tains the potential to reactivate, resume replication
and cause recurrent disease. In the case of HSV-1,
molecular criteria must be added to this definition
since, as will be discussed, during latency, the
structure of the viral DNA and the pattern of its
gene expression differ from the situation present

during viral replication in cell culture.

Animal models

The greater volume of information pertaining to
latency of the neurotropic herpesviruses stems from
studies with HSV-1 in experimental animals.
Subsequently the data were substantiated on
human tissue and findings were also later extrapo-
lated to studies using HSV-2 (Mitchell et al, 1990)
and varicella-zoster virus (VZV) (Croen et al, 1988).
The available models share a similar basic
approach (Fraser et al, 1984): peripheral (eg cornea,
pinna of the ear, etc) inoculation results in trans-
port of viral particles to the respective sensory gan-
glia and to the central nervous system (CNS) where
replication takes place. When replication ceases,
the animal tissues may be examined for the various
aspects of the latent state. The animal models made
it possible to break down the continuous process of
HSV-1 latency into several stages which can be



studied separately: (1) viral replication at the
peripheral site of infection; (2) transport of viral
particles to the nervous system; (3) establishment of
latent infection; (4) maintenance of the latent state
for the entire life of the host; and (5) reactivation.

Viral structure and replication in cell culture

The entire double stranded 152 kb DNA genome of
HSV-1 (Figure 1a) has been sequenced (McGeoch et
al, 1986; 1988; Perry and McGeoch, 1988) and most
of its gene products have been characterized for
structure ahd function (Roizman and Sears, 1990).
The mature virion includes a tegument layer locat-
ed between the capsid and the envelope.
Replication of herpes DNA and the assembly of the
viral capsid take place within the nucleus of the
infected cell during a highly coordinated process
with temporal synthesis of viral gene products
according to function (for reviews see Roizman and
Sears, 1987; 1990). HSV-1 genes are roughly divided
into three groups: immediate early (IE) or o genes
which are activated by a tegument structural pro-
tein Vmw65 (Batterson and Roizman, 1983;
Campbell et al, 1984); genes which encode for
enzymes involved in nucleotide metabolism (early,
B genes), that are activated by o genes; and late (7)
genes, which mainly code for structural proteins.
During productive HSV-1 infection the infected
cells undergo major structural and biochemical
alterations that ultimately culminate in their
destruction. However, it has been suggested that the
expression of o genes alone may not be deleterious
to the host (Roizman and Sears, 1987; Morhan et al,
1989).

Primary infection and establishment of
latency '

How does the viral genome reach the nervous
system?

Following peripheral inoculation and viral replica-
tion, HSV-1 DNA can be detected in the respective
innervating PSG. However, HSV-1 replication at the
peripheral site of primary infection is not a prereq-
uisite for the ability of HSV-1 to reach the PSG
(Efstathiou et al, 1989; Steiner et al, 1990). With or
without peripheral replication, the timing of viral
DNA appearance at the PSG suggests that following
virion attachment to axonal terminals it is the fast
retrograde axonal flow which mediates viral trans-
port to the nerve cell body (Cook and Stevens, 1973;
Kristensson et al, 1986).

The prevention of HSV-1 replication as a key to the
establishment of latency

Once HSV-1 reaches the PSG, it can resume replica-
tion. However, replication will cause host cell
destruction while factors, viral or cellular, which
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will prevent replication will enable the cell to sur-
vive and host the latent viral genome in the tissue,
thus favouring the establishment of latency. Indeed,
prevention of replication by passive immunization
prior to ocular infection results in decreased
detectable peripheral replication of virus, but
increases the amount of viral DNA and the number
of latently infected neurons in PSG via an unknown
mechanism (Birmanns et al, 1993). It is noteworthy,
therefore, that while most human adults are
seropositive for HSV, and up to 61% of them have
recurrent mucocutaneous disease, only less than
5% have a history of clinical primary disease
(Whitley, 1985), suggesting that viral replication
may not take place during all primary HSV-1 infec-
tions. Several factors can prevent replication or
abort it prior to host cell destruction. Most of them
are not an absolute prerequisite for the ability of
HSV-1 to establish latent infection, and some of
them may act in concert to enable the establishment
of latency.

Viral factors which favour establishment of latency
Vmw65 may play a pivotal role in the outcome of

"HSV-1 infection and the ability of the virus to enter

a latent state (Steiner et al, 1990; Steiner and
Kennedy, 1991). During attachment of HSV-1 viri-
ons to the axonal membrane, the virus loses its
envelope, and therefore, part of the content of the
tegument, Vmw65 included, may be lost during
viral transport to the neuronal nucleus (Lycke et al,

1984, 1988). The amount of Vmw65 reaching the

nucleus is one determinant of whether a lytic repli-
cation cycle will ensue. Indeed, lack of functional
Vmw65 was associated with higher proportion of
latently infected neurons (Steiner et al, 1990).
However, the presence of Vmw65 by itself does not
prevent the establishment of latency (Sears et al,
1991). Another factor which might influence the
ability of HSV-1 to replicate and therefore affect the
formation of a latent infection, is the amount of
inoculated virus (Fraser et al, 1991). This is analo-
gous to the ability to overcome a defect in replica-
tion of a mutant virus in cells in culture by increas-

ing the multiplicity of infection (MOI). It might be.

of special relevance in certain cells, eg neurons,
which possess mechanisms to prevent HSV-1 repli-
cation and are therefore relatively non-permissive
for HSV-1 replication.

The non-permissiveness of neurons for HSV-1
replication as favouring the establishment of latent
infection

Several reports suggested that neurons, at least in
culture, express factors which have an inhibitory
effect upon expression of HSV-1 IE genes (Ash,
1986; Kemp et al, 1990; Wheatley et al, 1991;
Lillycrop et al, 1993), and therefore arrest HSV-1
replication at an early stage prior to irreversible cell
damage. One of these factors is Oct-2, a transcrip-
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tional factor expressed at high levels in nerve cells.
By binding to a protein complex containing Vmw65
it can inhibit the IE activation activity of Vmwe65
(Lillycrop et al, 1993). Thus, increasing the. MOI
will diminish the repressor activity of Oct-2 by
increasing the relative amount of Vmw65 and lead-
ing eventually to initiation of the HSV-1 replication
cascade.

The role of the immune system

Immunization of mice with hyper immune serum
prior to primary infection, prevents replication and
increases the number of latently infected neurons
(Birmanns et al, 1993). Several mechanisms might
be responsible for this observation: antibodies can
bind to HSV-1 infected neurons and downregulate
intracellular viral replication (Oaks and Lausch,
1984), and CD8+ T cells can terminate viral gene
expression in neurons without cytolysis (Simmons
and Tscharke, 1992). However, latent infection can
be formed in immunodeficient mice (Moriyama et
al, 1992; Valyi Nagy et al, 1992), suggesting that
while the immune mechanisms might contribute to
the establishment of latent HSV-1 infection they are
not absolutely required.

Molecular phenomena of HSV-1 latency

DNA structure, location and organization

The entire HSV-1 genome is present in latently
infected nervous tissue, but the ends within the ter-
minal repeats (Figure 1a) are present in amounts
suggesting that the latent HSV-1 DNA is maintained
either as a circular molecule or in a concatameric
form (Rock and Fraser, 1983, 1985; Efstathiou et al,
1986). The viral DNA is not integrated into the host
cell genome (Mellerick and Fraser, 1987), and is
organized in a structure similar in pattern to host
nuclear chromatin (Deshmane and Fraser, 1989).
The amount of viral DNA per latently infected cell
is unknown but it might be relevant to the mecha-
nisms of latency and reactivation, since it has been
suggested (Roizman and Sears, 1987; Fraser et al,
1991) that a smaller number of viral DNA copies per
cell is associated with inability to initiate replica-
tion within the nucleus and a larger copy number
will facilitate reactivation.

Gene expression :

No infectious viral particles are present during
latent infection. Therefore, the discovery of latent
phase HSV-1 transcriptional activity has stimulated
intensive research aimed at mapping and character-
izing HSV-1 latency-associated genes and elucida-
tion of their function. The viral latency-associated
transcription stems from a 10.4 kb fragment within
the repeat regions (Figure 1b) (Stevens et al, 1987;
Deatly et al, 1987; Croen et al, 1987; Steiner et al,

1988; Gordon et al, 1988; Stevens et al, 1988), but
only a 2.0 kb subfragment synthesizes two mRNAs,
2.0 and 1.5 kb in size, which are abundant enough
to be studied by Northern blot analysis (Spivack
and Fraser 1987; Steiner et al, 1988; Krause et al,
1988). These latency-associated transcripts (LATs)
are transcribed in the opposite direction to the IE
gene ICPO (Figure 1b—c) and overlap its mRNA3
end by approximately 700 bp. Only the 2.0 kb LAT
can be identified during viral replication in cell cul-
ture, and in much smaller amounts than those pre-
sent during latency (Spivack and Fraser 1987;
Krause et al, 1988; Spivack and Fraser, 1988b). The
LATs have several unique features: (1) they do not
belong to any of the three viral gene classes as char-
acterized during viral replication in cell culture
(Spivack and Fraser, 1988b); 5¢ (2) they accumulate
during latency (Spivack and Fraser, 1988a, b) and
by in situ hybridization can be demonstrated main-
ly or exclusively on and around the nucleus of the
infected cell (Stevens et al, 1987; Croen et al, 1987;
Steiner et al, 1988); (3) their promoter is located at
an unusual distance from their coding sequence
start site (Batchelor and O’Hare, 1990; Dobson et al,
1989; Zwaagstra et al, 1989, 1990), and its activity
is increased in neuronal cells in culture (Batchelor
and O’Hare, 1990, 1992; Zwaagstra et al, 1990;
Devi-Rao et al, 1991). Recently, another ‘cryptic’
promoter at a closer location to the initiation of the
LATs coding sequence was reported (Nicosia et al,
1993; Goins et al, 1994); (4) the 2.0 kb LAT tran-
script is unspliced, ie no RNA fragments (termed
introns) are removed to form it (Figure 1c). The 1.5
LAT is a spliced product derived by removal of a
0.5 kb intron (Figure 1c) (Wagner et al, 1988b;
Wechsler et al, 1988; Spivack et al, 1991), with a
nucleic acid sequence at the splicing donor site of
GC instead of the consensus GT (Mount, 1982). It
may therefore serve as an inefficient splice signal
during viral replication in cells in culture and non-
neuronal tissue (Spivack et al, 1991) and be respon-
sible for neuronal-specificity of production of the
1.5 kb LAT (Mador, Panet and Steiner, submitted for
publication); (5) the 2.0 kb LAT, has a splice donor
site around the beginning of its coding sequence
(Devi-Rao et al, 1991; Farrel et al, 1991), suggesting
that it is a stable intron. However, nuclear accumu-
lation is not a characteristic of introns and it is very
unusual for introns to be further processed.

Besides the LATs, additional RNAs stem from the
latency-associated 10.4 kb transcriptionally-active
region within the HSV-1 genome (Figure 1b), but
their relation to the LATs is unclear. In vitro studies
suggested the presence of two unstable larger tran-
scripts, 8.3—8.5 and 6.5 kb in size (Dobson et al,
1989; Zwaagstra et al, 1990; Devi-Rao et al, 1991).
The LATs are mainly unpolyadenylated (Spivack
and Fraser, 1987; Wagner et al, 1988a), ie the sever-
al adenine nucleotides at the end of the mRNA mol-
ecule required for its transport to the cytoplasm and



the translation into protein are missing. On the
other hand, the unstable larger transcripts, when
examined during viral replication in cell culture,
are polyadenyldted (Devi-Rao et al, 1991).

Gene products

No latent-phase HSV-1 gene products (LATs-coded
or other) have been identified in vivo so far. At pre-
sent, the possibility that no polypeptides are encod-
ed by the latency-associated genes seems plausible
despite the fact that at least two nucleic acid
sequences that can code for a sequence of amino
acids are present within the LATs (Figure 1c)
(Wechsler et al, 1989; Spivack et al, 1991).

Function and mechanisms of action of the
latency-associated genes

Function

A number of HSV-1 mutants defective in their abili-
ty to express LATs have been used to examine the
function of the latency-associated transcriptional
activity (Javier et al, 1988; Steiner et al, 1989; Ho
and Mocarski, 1989; Lieb et al, 1989; Sedarati et al,
1989; Hill et al, 1990; Trousdale et al, 1991). These
mutant viruses retain the ability to replicate in tis-
sue culture and to establish and maintain a latent
infection in vivo. However, a consistent viral pheno-
type is associated with some LAT-defective viruses:
aberrant and prolonged explant reactivation and
severely reduced ability for in vivo reactivation.
While this may suggest that the LATs participate in
the reactivation process, it is also possible that the
reduced reactivation ability of LATs(-) mutants may
be a consequence of establishment of latency in
fewer initial sites (Sawtell and Thompson, 1992).
Recent data has also shown that in latently infected
mouse PSG, LATs and IE genes (the latter acting as a
marker of HSV-1 reactivation) are not coexpressed
by the same cells (Ecob-Prince et al, 1993a, b).

Mechanisms of HSV-1 reactivation

HSV reactivation in humans, with resultant cold
sores or genital lesions, can be triggered by local
stimuli (such as injury to tissues innervated by the
neurons harboring latent infection) or by systemic
conditions including exposure to sun, fever, emo-
tienal stress and menstruation (Hill, 1985). Even
after repeated bouts of reactivation, most individu-
als do not exhibit permanent sensory loss or any
other neurological deficit in the affected der-
matomes (Gominak et al, 1990). We therefore
assume that reactivation is not associated with a
significant destruction of latently infected neurons
and thus differs from HSV-1 lytic replication.

‘Two major molecular questions which might be
relevant to the mechanisms of action of the latency-
associated genes are open at this point: (1) How
does replication begin in the absence of Vmw65
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protein to stimulate the early stages of the HSV-1
replication cycle? (2) How does the viral genome get
to the stage of active replication at the periphery
without prior destruction of the cell hosting the
latent viral genome?

Viral factors Theoretically the LATs, could aug-
ment and facilitate reactivation at four different
points: (1) Increasing the amount of latent viral
DNA during the establishment of latency. This is
supported by a study that demonstrated more
latently infected cells in TG of mice infected with
wild-type virus than with a LATs(-) mutant, suggest-
ing that the LATs may in fact participate in estab-
lishment of latency (Sawtell and Thompson, 1992).
(2) Releasing, or counteracting, under certain per-
missive circumstances, a neuronal inhibitory factor
that renders the neuron relatively non-permissive to
HSV-1 replication during the maintenance of laten-
cy. However, since even recurrent reactivations are
not accompanied by sensory loss, it seems unlikely
that reactivation is associated with HSV-1 replica-
tion in the PSG. (3) Initiation, at the periphery, of
the replication cascade of HSV-1. Since Vmw®65 is
not expressed during latency, it seems that a crucial
step in the ability of HSV-1 to reactivate is the pres-
ence of some viral or cellular factors which circum-
vent the initial lack of Vmw65 to activate IE gene
expression. Such a function might be mediated by
the latency-associated transcription. (4) Facilitating
the transfer of the viral nucleic acids from the PSG
via the axon to the periphery where the virus can
resume replication and reactivation without damag-
ing the nerve cells and the viral reservoir. The fact
that reactivation with LATs(-) mutants, though
defective, is possible with explant tissues (Steiner
et al, 1989) (where axonal transport is not required)
but not in vivo (Hill et al, 1990; Trousdale et al,
1991), may support the notion that LATs have a role
in viral DNA transport.

As no lantency-associated gene product has been
identified as yet, it is possible that these genes act
via functional RNA. The end of the LATs overlaps
with that of ICPO and therefore an antisense mecha-
nism (whereby a homologous transcript of opposing
orientation binds to a mRNA and physically blocks
its translation into gene products) for the LATs was
proposed (Stevens et al, 1987). While this hypothe-
sis could already be discounted on theoretical
grounds, results with HSV-1 LATs(-) mutants have
excluded it experimentally: the reactivation kinetics
of these mutants is not stimulated as it should have
been in the case of the absent antisense inhibition
of ICPO, but, on the contrary, is impaired.

Cellular factors The effect of cellular factors upon
reactivation and LATs expression has been exam-
ined in vitro and has yielded two interesting find-
ings. (1) Nerve growth factor (NGF) may have a role
in rendering a neuron non-permissive for viral reac-
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tivation, since it is required for the maintenance of
a quasi-latent form of HSV in a neuronal cell tissue
system (Wilcox and Johnson, 1987; Wilcox et al,
1990). (2) The promoter region of the LATs contains
a cAMP-responsive element and administration of
cAMP accelerated explant reactivation via a
sequence located within the LAT promoter region
(Lieb et al, 1991; Rader et al, 1993). In this case,
extraneural stimuli might trigger HSV reactivation
via second messenger signal transduction and
cAMP action upon LATs regulatory elements.

Immune factors Immunosuppression of latently
infected animals leads to HSV-1 reactivation
(Birmanns et al, 1993; Openshaw et al, 1979), sug-
gesting that immunological mechanisms are associ-
ated with maintenance of latency. However, this
phenomenon is the exception, since in humans,
recurrent disease usually occurs in immunocompe-
tent hosts who are seropositive for HSV-1.
Moreover, latency is maintained under conditions
associated with defective T- and B-cell functions
(Moriyama et al, 1992; Valyi-Nagy et al, 1992). As
no viral antigens are expressed during latent infec-
tion, and the process of reactivation probably does
not involve host cell destruction within the PSG,
immune responses are unlikely to be evident in the
PSG. On encountering mature virions at the periph-
ery, however, the immune system may be activated.

CNS latency and the source of the virus
causing encephalitis

Although HSV-1 is responsible for the viral
encephalitis with the highest fatality rate, much less
is known about the molecular biology of latent
HSV-1 infection in the CNS than in the PNS. HSV
has also been implicated in the pathogenesis of
other CNS disorders such as multiple sclerosis
(Kastrukoff et al, 1987), Behget disease (Eglin et al,
1982) and Alzheimer’s disease (Ball, 1982), but no
conclusive evidence to link HSV (both 1 and 2)
with any CNS disease other than meningoen-
cephalitis, myelitis (Shyu et al, 1993) and Mollaret’s
meningitis (Yamamoto et al, 1991; Cohen et al,
1994) has been produced so far.

HSV-1 reactivation ability from CNS tissue is
extremely limited

Following viral replication within TG in experi-
mental animals the virus travels to, and replicates
in, the CNS (Stevens, 1989), but when replication
ceases, explanted brainstem tissues do not reacti-
vate virus. Similarly, despite the presence of HSV-1
nucleic acids in the human brain (Fraser et al, 1981,
and our unpublished data) we are unaware of any
report of recurrent encephalitis induced by HSV-1,
and attempts to reactivate HSV-1 from explanted
human CNS tissue have failed. Herpes encephalitis

in immunocompetent individuals is a very rare sin-
gle event which is 1 million fold less frequent than
the peripheral disease (Whitley, 1985). The source
of the virus causing herpes encephalitis is not
known. It has been suggested that encephalitis is
due to HSV-1 reactivation from TG (Johnson, 1982),
since the infectious process tends to involve the

" temporal and frontal lobes, brain regions with blood

vessels and meninges which derive their sensory
innervation from the TG. However, since not all
cases of herpes encephalitis are caused by the same
viral strain that is responsible for cold sores in the
same individual (Whitley et al, 1982), it is assumed
that in approximately half of the patients HSV-1
encephalitis occurs during primary viral infection
(Whitley, 1990). Moreover, even in the presence of a
prior HSV-1 infection, a second primary infection
with another HSV-1 strain can take place and thus
may be responsible for the encephalitic infection.

Several factors may be responsible for the differ-
ences between HSV-1 reactivation from the periph-
eral and the central nervous systems. (1) The quan-
tity of the LATs may contribute to the efficacy of
reactivation (Birmanns et al, 1993; Block et al,
1990). While the organization of the HSV-1 DNA in
the brainstem and in the TG is similar (Rock and
Fraser, 1983), the relative amounts of viral DNA and
latency-associated gene expression in the CNS are
lower than those in the PNS (Steiner et al, 1994). (2)
The type of gene expression in the CNS may differ
from that present in PSG. Thus, the 1.5 kb LAT was
not detected in brainstem tissue (Steiner et al,
1994). (3) Still unknown host and CNS-specific tis-
sue factors might inhibit viral reactivation in the
CNS.

A unifying scheme—the advantage of latency
in nervous tissue for the virus (Figure 2)

We suggest the following sequence of events.
During primary infection, HSV-1 enters sensory
nerve terminals at the peripheral site of inoculation
and is transported to the nerve cell body and nucle-
us via fast retrograde axonal transport. In the nucle-
us of the neuron, prevention of lytic infection is
critical for the establishment of latency. Several fac-
tors, cellular and viral, can act alone or in concert to
prevent replication and enable the establishment of
latency. Recent evidence even suggests that neurons
may have a unique ability to survive viral infections
by blocking programmed cell death (Levine et al,
1993). Both the establishment of latency and the
latency-associated restricted gene expression take
place at a very early stage, following arrival of the
viral genome in the nucleus.

The unique ability of neurons to transport mole-
cules away from their cell body to other tissues and
distant body regions, and from the periphery into
the neuronal soma, has an obvious advantage for
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Figure 2 Schematic illustration of herpes simplex virus replication cycle and possible mechanisms of latent infection in the nervous
system of animals. Following primary infection at peripheral mucocutaneous tissues, the virion travels via fast axonal transport to
peripheral sensory ganglia (PSG). Under certain conditions which favour viral replication, such as high levels of Vmw65, high amount
of inoculated virus and defective immune mechanisms, a full replication cycle will ensue, leading to neuronal cell death. By constrast,
an effective immune system, low levels of Vmw65, low amounts of inoculated virus and neuronal-specific factors such as Oct-2 will
prevent viral replication and could lead to the establishment of latent infection. Neurons are also capable of aborting HSV replication
at a stage which will not lead to cell death and enable the formation of latent HSV-1 infection. Following primary infection, HSV is also
able to travel to the central nervous system (CNS) and replicate there. During latency HSV-1 genome is ‘endless’ and latency-specific
gene expression takes place. Under specific systemic and local triggers the latent genome can reactivate, travel to the periphery and
replicate there. The ability of HSV-1 to reactivate and travel to the CNS is uncertain. :

the survival of HSV-1. It makes it possible physical-
ly to separate the site of active viral replication in
the mucocutaneous tissues from the neuronal cell
body, which serves as the permanent reservoir of
viral DNA, and remains undamaged. Viral replica-
tion in the peripheral mucocutaneous tissues
enables the spread of infection to other carriers.

While it is possible that viral DNA is transported
from PSG to the CNS as well as to the periphery,
reactivation of HSV-1 DNA does not occur in the
CNS (unlike replication, when a replication compe-
tent virus reaches CNS tissue). It is therefore likely
that HSV-1 encephalitis is due either to primary
infection in a rare case of a seronegative individual,
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or due to an infection with another, HSV-1 strain,
rather than reactivation of latent virus from the
trigeminal ganglia.

The role of the HSV-1 LATs in reactivation is not
entirely clear. The LATs might act to stimulate host
functions required for reactivation, or conversely, to
inhibit the synthesis of host factors that suppress
reactivation. Alternately, they may replace Vmwe65
protein function and initiate IE expression. Another
possibility is that the LATs may promote the migra-
tion of latent viral DNA out of the neuronal nucle-
us, into the cytoplasm and the axon. Further
research is required to establish the role of the
latency-associated gene expression in the HSV-1
latency process, and we anticipate significant
advances in the understanding of HSV latency at
the molecular level over the next few years. The
extent to which such advances will enhance our
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