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C2H2-546: A zinc ®nger protein differentially
expressed in HTLV-1 infected T cells
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We report the cloning and characterization of a novel cDNA termed C2H2-546
which encodes a C2H2-type zinc ®nger protein. C2H2-546 RNA is expressed in
the HTLV-1 infected T cells examined which were derived from HAM-TSP
patients, but not in T cells derived from ATL patients. The C2H2-546 gene is
conserved in humans and primates and maps to chromosome 10q11.2, a site
associated with a variety of cancers. Thus, C2H2-546 is a candidate regulatory
molecule important in the formation of these tumors, and may serve as an
important marker to distinguish HTLV-1 infected ATL versus HAM-TSP T cell
lineages.

Keywords: HTLV-1; transcription factor; zinc ®nger; molecular pathogenesis

Zinc ®nger domains are found in a variety of
transcription factor families (Pieler and Bellefroid,
1994). C2H2-type zinc ®nger proteins possess two
conserved cysteines which are part of an antipar-
allel beta-sheet and two conserved histidines which
are part of an alpha-helix, coordinated by a central
zinc atom to form a globular domain. C2H2 zinc
®nger proteins comprise the largest family of
transcription factors known with an estimated
300 ± 500 genes encoding these proteins in the
human genome (Bellefroid et al, 1989). The protein
family is typi®ed by the RNA Polymerase II
transcription factor TFIIIA (Miller et al, 1985) and
the gap gene product Kruppel (Schuh et al, 1986).

The function of most C2H2-type zinc ®nger
proteins is unknown. However, individual proteins
have been shown to be important in development,
tumorigenesis, RNA metabolism and chromatin
assembly. C2H2 zinc ®nger proteins are believed
to affect gene expression through sequence-speci®c
binding to DNA and/or RNA and through protein-
protein interactions, and have been shown to
function as transcriptional activators and repres-
sors. In addition to the conserved zinc ®nger
domain, some C2H2-type zinc ®nger proteins
contain the conserved amino acid sequence TGEKP

between adjacent ®ngers, as well as KRAB, FAX,
tramtrack, POZ and homeodomains found outside
of the zinc ®nger domain (referenced in Becker et al,
1995).

Previously, we isolated greater than 100 novel
cDNAs encoding C2H2-type zinc ®nger proteins.
This was accomplished by screening a human
hippocampal cDNA library from a normal 2-year-
old female using a degenerate oligonucleotide
speci®c for C2H2-type zinc ®nger motifs (Becker et
al, 1995). A series of RNA dot-blot analyses were
performed in order to determine the differential
expression of the RNA molecules encoding these
proteins in a variety of tissues and cells. Interest-
ingly, one of these clones, C2H2-546, was expressed
in human T cells including Jurkat, but not in ATL
lines including HUT-102 (data not shown). C2H2-
546 was sequenced in both directions following
creation of nested deletions. Sequencing reactions
were performed on an Applied Biosystems robotic
workstation and analyzed on an Applied Biosys-
tems 373A automated DNA sequencer using ¯uor-
escent labeled vector primers. Sequences were
compared to the non-redundant databases of the
National Center for Biotechnology Information
(NCBI) at the National Library of Medicine using
the BLAST algorithm. The sequence reveals a cDNA
of 1140 nucleotides, as presented in Figure 1. The
open reading frame codes for a protein of 273 amino
acids. An ATG coding for a candidate initiator
methionine is found at the 5' end of the cDNA.
C2H2-546 contains seven zinc ®nger domains,

Correspondence: PD Drew, Neuroimmunology Branch, National
Institute of Neurological Disease and Stroke, NIH, Building 10, Rm
5B16, Bethesda, Maryland 20892, USA
Received 17 February 1997; revised 14 July 1997; accepted 7
August 1997

Journal of NeuroVirology (1997) 3, 455 ± 459

ã
http://www.jneurovirol.com

1997 Journal of NeuroVirology, Inc. 



approximately evenly spaced within the protein.
The ®rst six domains closely resemble the TFIIIA
prototype C2H2 type zinc ®nger domain (Miller et
al, 1985), conforming to the zinc ®nger consensus C-
X2-C-X3-F-X5-L-X2H-X3-H (except ®nger six in
which L is substituted). Interestingly, the carboxy-
terminal zinc ®nger domain of C2H2-546 is a C2HC
rather than a C2H2 zinc ®nger. To our knowledge,
the presence of C2H2 and C2HC zinc ®ngers
domains in the same cDNA has not been described
previously in higher vertebrates. Mutations in the
gene encoding the C2HC-type zinc ®nger protein
longitudinals lacking (lola) lead to defects in axonal
development in central and peripheral nervous
system in Drosophila (Griniger et al, 1994). All zinc
®ngers are linked by the conserved H/C linker and
spaced by seven amino acids (Schuh et al, 1986).
C2H2-546 is represented schematically in Figure 2.

As stated previously, C2H2-546 RNA was origin-
ally observed in RNA dot-blot analyses to be present
in T cells including Jurkat but absent from ATL lines
including HUT-102 (data not shown). These data
were supported by Northern blot analyses (per-
formed as described previously by Drew et al,
1993) which indicated that 32P-labeled C2H2-546
cDNA bound a single RNA species of approximately
1.2 kb in control HTLV-1 negative T cells including
HUT-78 and CEM, but not the HTLV-1 expressing

primary ATL derived T cell lines HUT-102 and MT-1
(Figure 3). This suggested that C2H2-546 RNA
expression may be repressed in HTLV-1 infected T
cells. However, C2H2-546 RNA is present in the
HTLV-1 infected non-leukemic CD4+ T cells derived
from two different HAM-TSP patients designated
HAM/TSP 1 and HAM/TSP 2. In addition, C2H2-
546 RNA was present in two HTLV-1 expressing T
cell lines, C81 and MT-2, derived by co-cultivation of
ATL leukemic cells and non-leukemic CD4+ T cells.

The present studies indicate that C2H2-546 RNA
is present in human T cell lines, but absent from
primary T cell lines (Hut-102 and MT-1) derived
from the leukemic CD4+ T cells of two HTLV-1
infected ATL patients (Poisz et al, 1980; 1981;
Hinuma et al, 1981). This is supported further by
the ability to detect C2H2-546 RNA in an HTLV-1
infected T cell line (C81) which was not a primary
ATL isolate but rather a co-culture of ATL leukemic
cells and non-HTLV-1 infected CD4+ T cells.
(Mitsuya et al, 1983; T Waldmann, personal
communication). Of interest was the presence of
C2H2-546 RNA in the MT-2 cell line which, at the
time we obtained this line, was unclear whether this
HTLV-1 infected ATL line was derived from a
primary ATL isolate or a long-term co-cultivation.
This would suggest that the HTLV-1 infected MT-2
cell line is likely to be a co-cultivation based upon

Figure 1 Nucleotide and predicted amino acid sequences of
C2H2-546. The nucleotide and amino acid sequences are
numbered on the right and left, respectively. The zinc ®nger
motifs are underlined. The nucleotide sequence appears in the
GenBank sequence database (accession number U 69645).

Figure 2 Schematic diagram of C2H2-546. Zinc ®nger domains
are designated by hatched bars. Amino acids are numbered.
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Figure 3 RNA expression of C2H2-546. Total RNA was isolated
from the indicated cells, and Northern blots (30 microgram/lane)
were prepared as described in the text. Blots were probed with
full-length 32P-labeled C2H2-546 cDNA.
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the expression of C2H2-546 RNA which could not
be detected in two well de®ned HTLV-1 infected
long-term T cell lines derived from two ATL
patients, HUT-102 and MT-1, but detected in an
HTLV-1 expressing long-term T cell line, C81,
known to be derived from co-cultivation. Since
HTLV-1 infected CD4+ T cell lines derived from the
PBL of two HAM-TSP patients (Jacobson et al, 1988)
express C2H2-546 RNA, this indicates that viral
infection or viral regulatory proteins do not repress
C2H2-546 RNA in all infected cells. In fact, the
disparate expression of C2H2-546 RNA may mark
an important distinction between HTLV-1 infected
ATL and HAM-TSP cells.

Southern blot analyses were performed to deter-
mine evolutionary conservation of the C2H2-546
gene. In these analyses, DNA isolated from the
indicated species (Clontech) were digested with
EcoRI. The DNA (10 g/lane) was run on 1% agarose
gels in 16TBE. Following denaturation with NaOH
and neutralization, DNA was transferred to Nylon
membranes (MSI, Westboro, MA) as described
previously (Ausebel et al, 1987). Blots were
hybridized with C2H2-546 cDNA radio-labeled
with 32P by random priming (Prime-It, Stratagene)
at 688C in Quikhyb (Stratagene) as described by the
manufacturer. Blots were washed twice at room
temperature in 26SSC, 0.1% SDS, followed by two
washes at 608C in 16SSC, 0.1% SDS, and auto-
radiography was performed. Southern blot analysis
indicated that the C2H2-546 gene is present in
humans and primates, but not in lower vertebrates

or invertebrates. (Figure 4). Southern analysis also
indicated that some novel C2H2-type zinc ®nger
genes were conserved in all vertebrate species
analyzed (data not shown). This further supports
the contention that the C2H2-546 gene is present
only in higher vertebrates.

The chromosomal localization of C2H2-546 was
determined by PCR analysis using somatic cell
hybrid panels, radiation hybrid panels, and mega-
YAC libraries. Oligonucleotides were designed to
amplify a 161 bp product from the 3' UTR of C2H2-
546 (5'-TGTCACTGACAGTTTCTGAGGCA G-3', 5'-
GTCAGAGAGGAAGACTCAGACTAT-3') in the
PCR analysis. The NIGMS human-rodent panel #1
was used in somatic cell hybrid analysis (Poly-
meropoulos et al, 1993). The Genebridge 4 radia-
tion hybrid panel (Walter et al, 1994) was used in
radiation hybrid analysis. Statistical analysis of the
data was performed using the RHMAPPER software
package (D Slonim, L Stein, L Kruglyak and E
Lander, unpublished software). The YAC pools
screened were from the CEPH `B' human mega-
YAC library (Research Genetics, Huntsville, AL)
(Berry et al, 1995). Microsatellite markers on or
near the YAC address and the position of the YAC
relative to known markers was determined using
the program `yacsr' (MH Polymeropoulos et al,
unpublished). A cytogenetic location was deter-
mined by searching the cytogenetic location of
nearby markers (MIT/Whitehead and Genome
Database on-line database). C2H2-546 is contained
on the YACs 895 ± D ± 3, 897 ± H ± 4, and 941 ± B ±
10, all of which are on the contig 10.3. This contig
contains the marker WI-9393, whose cytogenetic
location has been determined to be 10q11.2.
Radiation hybrid mapping placed C2H2-546
9.87cR telomeric to the marker WI-7098, and
between this marker and D10S196, both of which
have been cytogenetically mapped to 10q11.2.
The data vector was as follows: 021020200
12200010120001010000001010000010102000200-
00000002002000100102010002110210020011022-
01. Thus, we have localized the C2H2-546 gene to
chromosome 10q11.2 by somatic cell hybrids,
radiation hybrids, and mega YAC libraries. The
amino-terminus of C2H2-546 is homologous to a
partial sequence of the uncharacterized clone
ZNF 32 (KOX 30). ZNF 32 was mapped by in situ
hybridization to human chromosome 10q23-q24.
(Cannizzaro et al, 1993). The reason for this
discrepancy is unclear, but our detailed analysis
indicates that C2H2-546 maps to chromosome
10q11.2. In addition to C2H2-546, other C2H2-type
zinc ®nger encoding genes including ZNF 11,
ZNF 22, and ZNF 25 have been mapped to
chromosome 10q11.2 (Rousseau-Merck et al,
1992). However, the function of this cluster of
related genes has not been elucidated. A variety of
tumors have been associated with the human
chromosome 10q locus. Examples include melano-
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Figure 4 Genomic Southern blot analysis of C2H2-546.
Genomic DNA (10 microgram/lane) from the indicated species
was digested with EcoRI and Southern blots were prepared as
described in the text. Blots were probed with full-length 32P-
labeled C2H2-546 cDNA. The position of molecular weight
markers are indicated.

Differential expression of zinc ®nger RNA in ATL vs HAM-TSP
PD Drew et al

457



ma (Walker et al, 1995), prostate cancer (Gray et al,
1995), Non-Hodgkins lymphoma (Speaks et al,
1992), acute lymphoblastic leukemia (Dube et al,
1991), adult T cell leukemia (Miyamoto et al,
1984), and glioblastoma (Fults and Pedone, 1993).
Thyroid carcinomas (Herrmann et al, 1991) and
multiple endocrine neoplasia which is frequently
associated with mutations in the RET oncogene

(Mulligan et al, 1993) are speci®cally associated
with mutations at chromosome 10q11.2. Interest-
ingly, C2H2-type zinc ®nger proteins have pre-
viously been associated with tumorigenesis (Call et
al, 1990; Gessler et al, 1990; Chen et al, 1993;
Kerckaert et al, 1993). This suggests the possibility
that C2H2-546 may play a role in cancers
associated with mutations at chromosome 10q11.2.
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