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Alzheimer's disease (AD) is the most common cause of dementia in the elderly,
and the fourth leading cause of death in the United States. Its pathological
changes include amyloid beta deposits, neuro®brillary tangles and a variety of
`in¯ammatory' phenomenon such as activation of microglia and astrocytes.
The pathological signi®cance of in¯ammatory responses elicited by resident
central nervous system (CNS) cells has drawn considerable attention in recent
years. Chemokines belongs to a rapidly expanding family of cytokines, the
primary function of which is control of the correct positioning of cells in tissues
and recruitment of leukocytes to the site of in¯ammation. Study of this very
important class of in¯ammatory cytokines may greatly help our understanding
of in¯ammation in the progress of AD, as well as other neurodegenerative
diseases. So far, immunoreactivity for a number of chemokines (including IL-8,
IP-10, MIP-1b, MIPa and MCP-1) and chemokine receptors (including CXCR2,
CXCR3, CXCR4, CCR3, CCR5 and Duffy antigen) have been demonstrated in
resident cells of the CNS, and upregulation of some of the chemokines and
receptors are found associated with AD pathological changes. In this review, we
summarize ®ndings regarding the expression of chemokines and their
receptors by CNS cells under physiological and pathological conditions.
Although little is known about the potential pathophysiological roles of
chemokines in CNS, we have put forward hypotheses on how chemokines may
be involved in AD.
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Introduction

Alzheimer's disease (AD) is a devastating illness
affecting the elderly. It is the most common cause of
dementia and the fourth leading cause of death in
the USA. Its clinical features include progressive
dementia with gradual loss of cognitive function. Its
main neuropathological features include neuro®-
brillary tangles, senile plaques, and loss of neurons
and synapses (reviewed in Hyman, 1997). A marked
astrocytosis and microglial activation occurs
throughout the cortex. Substantial evidence has
implicated the involvement of `in¯ammatory' re-
sponses in AD pathogenesis (Hull et al, 1996; Mrak
et al, 1995; Rogers et al, 1996; Sheng et al, 1996),
and anti-in¯ammatory treatment has shown a

promising effect in delaying the disease progression
(McGeer and Rogers, 1992; Rich et al, 1995). Based
on the above reasons, we focused our attention on a
very important family of in¯ammatory cytokines,
the chemokine family in the CNS, and system-
atically studied their expression in both normal and
AD brains.

Four structural brances of human chemokines, a
(CXC), b (CC), g (C) and d (CX3C) have been
described, based on variations in a shared cysteine
motif. Chemokine receptors are correspondingly
named CXCR (1 ± 5), CCR (1 ± 8), CR and CX3CR. All
of them are members of the seven transmembrane
domain receptor superfamily. Table 1 lists chemo-
kine receptors and their corresponding ligands that
have been reported so far.

In the hematopoetic system, the primary function
of chemokines is control of the correct positioning
of cells in tissues and recruitment of leukocytes to
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in¯ammatory sites. In many central nervous system
(CNS) diseases such as multiple sclerosis (MS),
brain trauma, infections, or focal ischemia and
reperfusion, the blood brain barrier is breached,
and leukocyte in®ltration is found at the lesion sites
(Eng et al, 1996; Ghirnikar et al, 1998; Glabinski et
al, 1995a; Ransohoff, 1997; Ransohoff and Tani,
1998). Clearly, we would expect a role of chemo-
kines in the pathology of these diseases. What we
would like to emphasize here is that in AD, and
many other neurodegenerative diseases such as
amyotrophic lateral sclerosis (ALS), Huntington
disease (HD), etc., the blood brain barrier is intact,
and no in®ltration of in¯ammatory cells is present.
The chronic `in¯ammatory' responses implicated in
these diseases are believed to be caused by resident
CNS cells. So far, an impressive number of
chemokines and receptors have been found in
resident CNS cells, and there is growing evidence
showing that some of them are upregulated in AD
brains. Some interesting questions have therefore
been raised: Could these in¯ammation-related
chemokines expressed by resident CNS cells play
a role in the neurodegeneration process in AD and
even other neurodegenerative diseases? Do they
also have a role for the normal brain development
and function? In this review, we will focus on the
chemokines and their receptors that are expressed
by CNS cells and their potential roles in mediating
neuronal-neuronal, neuronal-glial and glial-glial
interactions in the CNS under physiological and
pathological situations, particularly AD.

Chemokines and their receptors in the CNS

Chemokines and their receptors that have been
detected under physiological or pathological con-
ditions in brain tissues or neuronal and glial
cultures by immunohistochemistry, by in situ or
by reverse transcriptase-polymerase chain reaction
(RT ± PCR) are summarized in Table 2. Although
the autoimmune disease model EAE is not directly
relevant to AD pathology, we have also included
some data obtained from this animal model to
provide supporting evidence as to which cell types
can be the source of chemokine expression in
vivo. So far, chemokines detected by immunohis-
tochemistry in brain tissue include IP-10 in a
subpopulation of resting and reactive astrocytes
(MengQi Xia et al, manuscript in preparation); IL-8
on astrocytes (Sanders et al, 1998); MIP-1b in
some resting and reactive astrocytes (Xia et al,
1998) and MIP-1a in neurons and weakly on some
microglia (Ishizuka et al, 1997a; Xia et al, 1998);
and MCP-1 in some reactive microglia (Ishizuka et
al, 1997b). Immunoreactivity for a number of
chemokine receptors has also been detected in
CNS cells: three (CXCR2, CXCR3, CXCR4) out of
the ®ve CXCRs have been detected on neurons,
and two (CCR3 and CCR5) out of eight CCRs have
been detected mainly on microglia cells and
weakly on neurons.

Alzheimer's disease

AD neuropathology contains two major features:
intraneuronal paired helical ®lament containing
neuro®brillary tangles which occur in neuronal
cytoplasm and processes, and complex extracellular
lesions called senile plaques. Senile plaques consist
of a deposit of Amyloid b (Ab), a 40 ± 42 amino
acids peptide derived from amyloid precursor
protein (APP). Frequently, plaques are surrounded
by reactive microglia, reactive astrocytes and
several types of dystrophic neurites. In AD brains,
we and other investigators have observed certain
abnormal patterns of chemokine and their receptor
expression often associated with senile plaques (Xia
et al, 1997; Horuk et al, 1997; Xia et al, 1998;
Ishizuka et al, 1997b). These ®ndings are summar-
ized in Table 2.

We have reported the constitutive presence of
CXCR2 on a subpopulation of neurons in cortical
and subcortical regions with its expression parti-
cular strong in pyramidal neurons of CA regions
and neurons of the dentate gyrus (Figure 1).
Upregulation of CXCR2 expression was observed
on some dystrophic neurites of senile plaques (Xia
et al, 1997). Simultaneous work by Horuk and
colleagues (Horuk et al, 1997) concurred with this
®nding. We have demonstrated by double staining
and confocal microscopic analysis that CXCR2

Table 1 Chemokine family in human

Branches Receptors Ligands

CXC (a)1,2

CXCR1 (IL-8RA)
CXCR2 (IL-8RB)

CXCR3
CXCR4
CXCR55

IL-8
IL-8, GROa, b, g, NAP-2,

ENA78, GCP-2
IP-10, Mig
SDF-1
BCA-1

CC (b)1,2

CCR-1
CCR2a/b
CCR3

CCR4
CCR5
CCR67,8

CCR79

CCR811,12

Rantes, MIP-1a, MCP-2, MCP-3
MCP-1, 2, 3, 4
eotaxin, Rantes, MCP-3, 4,

eotaxin-2
Rantes, MIP-1a, TARC6, MDC6

Rantes, MIP-1a, MIP-1b
MIP-3a, LARC
6Ckine10, MIP-3b10

I-309, TARC13, MIP-1b13

C (g)3 CR Lymphotactin
CX3C (d)4 CX3CR Fractalkine
Promiscuous Duffy antigen

Others
MGSA, IL-8, Rantes, MCP-1, etc.

1Baggiolini et al, 1997; 2Premack and Schall, 1996; 3Yoshida et
al, 1998; 4Bazan et al, 1997; 5Legler et al, 1998; 6Imai et al,
1998; 7Baba et al, 1997; 8Greaves et al, 1997; 9Yoshida et al,
1997; 10Campbell et al, 1998; 11Tiffany et al, 1997; 12Roos et al,
1997; 13Bernardini et al, 1998.
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expression on dystrophic neurites correlates with
APP expression. Almost all CXCR2 positive neuritic
plaques correspond to APP positive neuritic pla-
ques, and most of those dystrophic neurites are
negative for PHF tau, a marker of degenerating
neurites. Interestingly, APP positive neuritic pla-
ques (at least a substantial proportion) are believed

to represent aberrant regenerating neurites (Geddes
et al, 1986; Masliah et al, 1991; 1992) and APP has
been shown to play a role in promoting neurite
outgrowth and neuronal survival in vitro (Mattson,
1997; Milward et al, 1992). Therefore, we speculate
that CXCR2 positive dystrophic neurites represent
aberrant regenerating neurites.

Table 2 Chemokines/receptors evaluated in the CNS

Human Rodent

CXCR1
CXCR2

Not detectable1

Neurons and some neuritic plaques in AD1,2

IL-8 Constitutively present in astrocytes3

Induced in fetal microglia culture by LPS, IL-1b or
TNF-a4 or bacteria5

Induced in astrocytes by TNF-a and IL-1b6

or by reduced microenvironmental oxygen pressure7

mRNA detectable in neoplastic astrocytes8a,b

CXCR3
IP-10

Neurons including purkinje cells9

Constitutively present in some astrocyte9

elevated in some reactive astrocytes in AD9

present in 79% in the CSF of viral meningitis patients10

Inducible in both astrocytes and microglia culture
by LPS, TNF-a and IFN-g11 or noninfectious NDV12

also induced in neuroblastoma by MV13

The most prominently induced chemokine mRNA
Induced in resident CNS cells in LCM14

In mouse EAE, mRNA accumulated in a striking, transient
burst within astrocytes near the in¯amed sites15 and

only detectable in the early phase of EAE16

Mig Not available mRNA inducible in rat astrocytes and microglia by IFN-g17

CXCR4 Neurons and microglia18 Gene de®cient mice showed abnormal cerebellum
development19

SDF-1 Not available Gene de®cient mice showed abnormal cerebellum
development19,20

CCR1 Not available mRNA detected in mouse astrocyte by PCR, mediate
astrocyte chemotaxis to MIP-1a21

CCR2 Not available
MCP-1 Reactive microglia of mature senile plaques in AD22

present in 97% in the CSF of viral meningitis patients10

CSF levels markedly higher in CMV encephalitis23

Protein inducible in rat and mouse glial culture by LPS11

mRNA or protein induced in rat CNS cells after focal
ischemia24 and excitotoxic injury25

In mouse EAE, accumulated in a striking, transient burst
within astrocytes near the in¯amed sites15

sharply induced in astrocytes near mechanical injury26

CCR3 Upregulated in some reactive microglia in AD27

Eotaxin Not detectable
CCR5 Upregulated in some reactive microglia in AD27 mRNA upregulated in rat focal ischemia model28

MIP-1a Neurons and some microglia27,29

mRNA and protein inducible by LPS, TNFa or IL-1b
in human fetal microglia culture30

mRNA induced in mouse resident CNS cells after spinal
cord injury31 and in rat CNS cells after focal ischemia24,32

MIP-1b Upregulated in reactive astrocytes of AD27

mRNA and protein inducible by LPS, TNFa or IL-1b
in human fetal microglia culture30

mRNA induced in mouse resident CNS cells after spinal
cord injury31

Rantes Not detectable27 mRNA induced in rat astrocytes and microglia by
noninfectious NDV12

MCP-3 Not detectable27

CX3CR Not available mRNA detected in rat microglia by in situ33

Fractalkine Not available mRNA detected in rat neurons by in situ33

Duffy antigen Exclusively Purkinje cells in cerebellum2

Unless otherwise speci®ed, all the results of brain tissues were obtained by immunohistochemistry. LCM: lymphocytic
choriomeningitis. NDV: the neurotropic paramyxovirus, Newcastle disease virus. MV: Measles virus. 1Xia et al, 1997; 2Horuk et
al, 1997; 3Sanders et al, 1998; 4Ehrlich et al, 1998; 5Lipovsky, et al 1998; 6Aloisi et al, 1995; 7Desbaillets et al, 1997; 8aNitta et al,
1992; 8bVan Meir et al, 1992; 9MengQi Xia et al, manuscript in preparation; 10Lahrtz et al, 1997; 11Sun et al, 1997; 12Fisher et al,
1995; 13Nazar et al, 1997; 14Asensio and Campbell, 1997; 15Glabinski et al, 1995b; 16Tanti et al, 1996; 17Vanguri et al, 1995; 18Lavi et
al, 1997; 19Zou et al, 1998; 20Nagasawa et al, 1996; 21Tanabe et al, 1997; 22Ishizuka et al, 1997b; 23Bernasconi et al, 1996; 24Kim et al,
1995; 25Sza¯arski et al, 1998; 26Glabinski et al, 1996; 27Xia et al, 1998; 28Spleiss et al, 1998; 29Ishizuka et al, 1997a; 30McManus et al,
1998; 31Bartholdi and Schwab, 1997; 32Takami et al, 1997; 33Nishiyori et al, 1998.
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Most recently, we have also demonstrated that
CCR3 and CCR5 are present on microglia of both
normal and AD brains (Figure 2, and their expres-
sion is increased on some reactive migroglia in AD
(Xia et al, 1998). Some of the CCR3+ or CCR5+

reactive microglia are found associated with amy-
loid deposits. Among the tested CCR3 and CCR5
ligands, including MIP-1b and MIP-1a, RANTES,
eotaxin and MCP-3, only immunoreactivities for
MIP-1b and MIP-1a were observed. MIP-1b was
predominantly found in a subpopulation of reactive
astrocytes which were more widespread and more
strongly stained in AD than control brains. MIP-1a
stained predominantly in neurons and weakly in
some microglia particularly in the white matter of
both AD and controls. Thus one cell type produces
ligand, and another cell type has receptor, suggest-
ing a role for this class of chemokines in cell-cell
communication in the CNS. Some of the CCR3+ or
CCR5+ reactive microglia and MIP-1b+ reactive
astrocytes were found associated with amyloid
deposits. An interesting part of the CCR3 and
CCR5 story was that these two receptors are the
recently found co-receptors for HIV entry into cells
(Broder and Collman, 1997; Choe et al, 1996; Deng
et al, 1996). Microglia, the primary target of HIV
infection in the CNS, also use these receptors for the
viral entry (He et al, 1997; Ghorpade et al, 1998).
HIV infected patients may develop a progressive

dementia, with motor and behavioral impairment
termed `AIDS-dementia complex'. The apparent
activation of these b chemokine systems in AIDS-
dementia complex (Nuovo and Al®eri, 1996;
Schmidtmayerova et al, 1996 ), may have a
detrimental role to neuronal function. We speculate
that their apparent activation in AD brain may also
play a role in this disease process.

Our ongoing experiments have shown over-
whelming upregulation of IP-10 in reactive astro-
cytes despite the weak presence of this chemokine
constitutively in a subpopulation of resting astro-
cytes. CXCR3 immunoreactivity was found on a
subpopulation of cortical neurons (MengQi Xia et
al, manuscript in preparation). Unlike CXCR2, its
expression did not appear to be associated with AD
pathology.

Ishizuka and colleagues have reported the pre-
sence of MCP-1 (a CCR2 ligand) in mature senile
plaques and reactive microglia but not in immature
senile plaques of brain tissues from ®ve AD patients
by immunohistochemistry (Ishizuka et al, 1997b).

Regulation of chemokine production

As summarized in Table 2, various stimuli such as
LPS, cytokines, reduced oxygen pressure, some
viral infections, etc., either alone or in combination,
can stimulate different type of chemokines from
different cell types. In vitro, although some

Figure 1 IL-8RB (CXCR2, Mab 6C6) immunoreactivity in (a
and b) and the hippocampal formation of a 66 year old male
control patient showing that (a) neurons and neutrophil of the
dentate gyrus and CA region are strongly immunoreactive; (b)
phyramidal neurons in CA 1 region are clearly stained; in (c and
d) the hippocampal formation of a 74 year-old male AD patient
showing that (c) a similar pattern of gray matter staining and an
increased immunoreactivity on a subpopulation of plaques; and
(d) a higher power view of some of the neuritic plaques in CA1
region. These neuritic plaques were later shown by double
immuno¯uorescent staining and confocal microscopic analysis
to be positive for APP but not tangles. Images (a) and (c), (b) and
(d) share the same magni®cations respectively. Modi®ed with
permission (Xia et al, 1997).

Figure 2 CCR3 (7B11) and CCR5 (3A9) immunoreactivity in the
inferior temporal lobes of a 58 year-old control patient and an 81
year-old AD patient with duration of illness for 12 years. CCR3
(a and b) and CCR5 (c and d) immunoreactivitities are clearly
seen on microglia of both cases. In the control case, the majority
of cells stained are resting microglia; while in the AD brain both
resting and reactive microglia cells are clearly stained, some
reactive microglia appears in clusters. All images have the same
scale of magni®cation. Adapted with permission (Xia et al,
1998).

Chemokine/receptors in CNS and AD
M-Q Xia and BT Hyman

35



chemokines are more predominantly expressed in
one cell type than another, virtually any cell type
may have the capacity to express chemokines.
However, chemokine expression in vivo appears to
be more restricted to particular cell types.

Non-in¯ammatory activities of chemokines

Studies in the hematopoietic system show that
binding of chemokines to their receptors leads to
changes in the coupling of G proteins to the
receptor (Baggiolini et al, 1997). A number of
downsream signal transduction pathways become
activated, including calcium mobilization, phos-
pholipase C, phosphatidylinositol (PI)3-kinase,
mitogen-activated protein (MAP) kinases and
serine/threonine and tyrosine kinases. The exact
mechanism of chemokine action in the CNS and
the subsequent events after receptor activation
await further study.

Apart from their chemotactic ability, chemo-
kines have also been demonstrated to have other
activitites in hematopoietic and other systems.
For example, MIP-1a has been shown to inhibit
the proliferation of hematopoietic stem cells in
vitro and in vivo (Cook, 1996). IL-8 has been
shown to have angiogenic activity (Kumar et al,
1998). IP-10 is known to be angiostatic; it has
been suggested that an imbalance of IP-10 and IL-
8 favors angiogenesis in idiopathic pulmonary
®brosis (Keane et al, 1997). IP-10 and MIP-1a
were able to block growth factor induced protein
synthesis and proliferation in hematopoietic
MO7e cells (Aronica et al, 1997); IP-10, and
another CXCR3 ligand Mig are both antitumor
agents that promote damage in established tumor
vasculature and cause tissue necrosis in human
Burkitt lymphomas (Sgadari et al, 1996; 1997; Yu
et al, 1997). Mice lacking the CXCR2 homologue
were apparently healthy despite increased B cells,
metamyelocytes and neutrophils (Cacalano et al,
1994). CCR5-de®cient mice showed reduced
ef®ciency in macrophage function (Zhou et al,
1998). CCR2 knockout mice developed apparently
normally, but have a selective decrease of
monocyte/macrophage response to MCP-1, and
reduced granulocyte and IFN-g response to
stimuli (Boring et al, 1997); The only evidence
of a physiological role of chemokines and
chemokine receptor in the CNS come from data
that mice de®cient of CXCR4 or SDF-1 (ligand for
CXCR4), in addition to haematopoietic and
cardiac defects, showed a different pattern of
cerebellum development with many proliferating
granule cells invading the cerebellar anlage (Zou
et al, 1998; Nagasawa et al, 1996). These studies
demonstrate the involvement of a G-protein
coupled chemokine receptor in neuronal cell
migration and patterning in CNS. It remains to

be tested whether other chemokine receptors play
any physiological roles in CNS.

Factors that may induce chemokine
production in the CNS

CNS resident cells such as microglia and astrocytes
are activated in AD and other neurodegenerative
diseases (Dickson et al, 1993; Lue et al, 1996; Mrak
et al, 1995; Sheng et al, 1996). In AD, the activated
glia tend to surround senile plaques presumably
through active chemotaxis. The chemotactic ability
of both migroglia and astrocytes to several factors
has been demonstrated (Maeda et al, 1997; Peterson
et al, 1997; Tanabe et al, 1997). Microglia have been
shown to be chemotactic towards Ab 25 ± 35
(Maeda et al, 1997) and some b-chemokines such
as MIP-1a, MIP-1b and MCP-1 (Peterson et al, 1997),
and astrocytes have also been shown to migrate
towards MIP-1a (Tanabe et al, 1997). Activated
microglia also demonstrate increased phagocytosis,
secretion of cytokines, activation of the respiratory
burst and induction of nitric oxide synthase (NOS)
(reviewed in Zielasek and Hartung, 1996). These
responses could be directly or indirectly respon-
sible for neuronal injury.

Chemotactic potential of Ab
Ab has been shown to stimulate the chemotactic
response of monocytes and microglia (Maeda et al,
1997). There is even evidence suggesting that Ab
itself may behave as a chemokine (Lorton, 1997).
Another interesting piece of information shows
that serum amyloid A (although different from Ab
in its primary structure) has the ability to promote
chemotaxis of human monocytes, and this effect
was mediated through a pertussis toxin-sensitive
signaling pathway, similar to the chemokine
receptor signaling pathway (Badolato et al, 1995).
It remains to be tested whether Ab itself can bind to
any chemokine receptor, and whether Ab-induced
cytokine release and chemotaxis is due to the same
pertussis toxin-sensitive signaling pathway.

Induction of cytokines and chemokines by Ab
Amyloid fragments have been shown to induce
production of certain in¯ammatory cytokines, such
as IL-1, IL-6, as well as some chemokines such as IL-
8. In addition to the fact that cytokines in their own
right may induce more cytokine/chemokine pro-
duction, the presence of Ab could greatly further
potentiate their production. For example, Ab 25 ±
35, ®brillar Ab 1 ± 40 or Ab 1 ± 42 are able to induce
IL-1b production from the activated monocyte cell
line THP-1 (Lorton et al, 1996), and Ab 25 ± 35 is
able to strongly induce IL-1b in astroglia (Del Bo et
al, 1995). Ab can also induce secretion of IL-6 and
IL-8 from human astrocytoma cells (U-373 MG) and
monocytes (Gitter et al, 1995; Meda et al, 1995).
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Proin¯ammatory stimuli such as LPS, IL-1b or TNF-
a can stimulate synthesis of IL-8 by microglial cells
(Ehrlich et al, 1998). Moreover, in the presence of
IL-1b, aged Ab markedly potentiated (3 ± 8-fold)
production of IL-6 and IL-8 by astrocytoma cells
(Gitter et al, 1995). Interestingly, Ab-induced IL-1b
release from monocytic cell line THP-1 is calcium-
dependent and requires the activation of speci®c G-
proteins, similar to chemokines receptor activation
(Lorton, 1997).

Taken together, we believe that Ab deposition
may directly or indirectly induce cytokine/chemo-
kine production which in turn may facilitate more
Ab deposition, and these cytokines and chemokines
may exert detrimental effects on neuronal function.

Potential chemokine pathogenesis in AD and
other CNS degenerative diseases

There has been very little information on the role of
chemokines in the CNS. Since a number of these
seven transmembrane surface molecules are con-
stitutively present on neurons, it suggests that they
have a physiological role in the CNS. Several
general mechanisms may warrant further investiga-
tion:

Direct/indirect effects on neurons (growth
promoting or toxicity)
Aside from the report that IL-8 has a neurotrophic
effect on long term rat hippocampal neuronal
culture (Araujo and Cotman, 1993), information
regarding the direct effect of chemokines on
neurons has been very scarce. Nevertheless, some
cytokines such as IL-1b have been shown to
increase neuronal vulnerability to Ab toxicity
(Fagarasan and Aisen, 1996), and IL-1b also
selectively enhances neuronal damage caused by
AMPA receptor activation in striatum (Lawrence et
al, 1998). IL-6 has been shown to selectively
enhance the calcium response of neurons to
excitotoxic stimuli (Qiu et al, 1995). IL-6 has been
shown to selectively enhance the calcium response
of neurons to excitotoxic stimuli (Qiu et al, 1995).
Moreover, cytokines by themselves can be neuro-
toxic: for example, IFN-g plus IL-1b were shown to
mediate neurotoxic effect in mixed neuronal/glia
cell culture via an apoptotic mechanism (Hu et al,
1997; Lipton, 1996). It is conceivable that chroni-
cally increased expression of cytokines and chemo-
kines in brain may play an important role in
mediating neuronal toxicity in a direct and/or
indirect fashion.

Chemokines may modulate APP processing or Ab
production
Both IL-1 and IL-6 induce neuronal APP mRNA
expression signi®cantly (Del Bo et al, 1995). IL-1b
has been shown to increase the maturation of APP

and cause enhanced processing of the full length
APP isoforms and secretion of APP (Dash and
Moore, 1995), which may presumably cause more
Ab production. Although there has been no report
on the effect of chemokines on APP processing,
since IL-1b has been shown to induce or potentiate
the production of some chemokines such as IL-8
(Ehrlich et al, 1998; Gitter et al, 1995), it is possible
that some chemokines may also play a role in
modulating Ab production.

Activation of kinase pathway
As all chemokine receptors are seven transmem-
brane G protein coupled molecules, we would
expect their roles in cell signaling and protein
phosphorylation through activation of kinase
pathways. For the receptors found on neurons,
their activation may result in the activation of
MAP kinases, which in turn may well contribute
to the hyperphosphorylation of tau in neuro®bril-
lary tangles (Drewes et al, 1992; Hyman et al,
1994). In non-neuronal cell or cell lines, there has
been evidence showing that binding of IL-8 or
GRO-a with CXCR2 and binding of SDF-1 with
CXCR4 resulted in MAP kinase activation (Jones
et al, 1995; Popik et al, 1998). Clearly, this area
can be a very important dimension of new
research.

Effect on neuronal physiology
Pro-in¯ammatory cytokines such as IL-1b and IL-6
has recently been suggested to be responsible for the
reduction of long term potentiation (LTP) in rodents
(Bellinge, 1995; Murray and Lynch, 1998). Even in a
situation when neuronal morphology is not ob-
viously affected, chemokines may affect neuronal
functions by affecting their LTP.

Conclusions and future directions

From the widespread expression of chemokine
receptors in the normal CNS, and upregulation of
some chemokines in resident CNS cells in AD, it
seems likely that chemokines are playing a pre-
viously unexpected role in CNS physiology and
pathophysiology.

From the many possible ways in which chemo-
kines may affect CNS biology, one may conclude
that we know little about the roles of this very
important superfamily of in¯ammatory cytokines in
the CNS. We hypothesize that chemokines, indivi-
dually or in combination, may be important for
normal communication among microglia, astro-
cytes and neurons and may help mediate activation
of cells under stress conditions. In AD, Ab deposits
appear to serve as a focal point for chemokine
upregulation, chemokines potentially play a role in
primary or secondary pathological events that lead
to neuronal death.
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Many questions remain, but tools are now
available to directly assess the role of speci®c
chemokines in the CNS. Moreover, since chemo-
kines can be detected by sensitive ELISAs, they may
prove important in monitoring disease activity and
potentially as a `read out' for therapeutic ef®cacy of
anti-in¯ammatory agents.
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