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Glucocorticoids and central nervous system
inflammation
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Glucocorticoids (GCs) are well known for their anti-inflammatory and im-
munosuppressive properties in the periphery and are therefore widely and
successfully used in the treatment of autoimmune diseases, chronic inflamma-
tion, or transplant rejection. This led to the assumption that GCs are uniformly
anti-inflammatory in the periphery and the central nervous system (CNS). As a
consequence, GCs are also used in the treatment of CNS inflammation. There is
abundant evidence that an inflammatory reaction is mounted within the CNS
following trauma, stroke, infection, and seizure, which can augment the brain
damage. However an increasing number of studies indicate that the concept of
GCs being universally immunosuppressive might be oversimplified. This ar-
ticle provides a review of the current literature, showing that under certain
circumstances GCs might fail to have anti-inflammatory effects and sometimes
even enhance inflammation. Journal of NeuroVirology (2002) 8, 513–528.
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Stress and glucocorticoids

Stress is the “nonspecific response of the body to
any demand.” This rather general definition of stress
was given over 60 years ago by famous stress-pioneer
H. Selye (Selye, 1936), who introduced the study of
stress (Selye, 1978) as a scientific topic dealing with
the physiological changes occurring in the structural
and chemical composition of the body in response
to a stressor (a neologism at the time, also created by
Selye). A stressor is defined as a physical and/or psy-
chological stimulus that induces these changes. Be-
cause most of the vast scientific literature shows the
negative and dangerous effects of stress for the body,
one could easily get the impression that the phys-
iological systems activated by stress are generally
bad and damaging in nature. Instead, stress should
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be seen as one of the most important and complex
adaptive bodily reactions. Stress by itself represents
a threat to the body’s homeostasis, but adaptation to
stress confers a survival advantage. Successful adap-
tation, however, requires not only the ability to re-
spond to a stressor but also to control that response
appropriately.

A key mechanism in the response to acute (“fight or
flight” reaction) and chronic (accumulation of minor
or major day to day reactions) stressors is the acti-
vation of the hypothalamic-pituitary-adrenal (HPA)
axis (Figure 1). First, the hypothalamus is stimu-
lated to secrete the corticotrophin-releasing hormone
(CRH), which after passage of the hypothalamic-
pituitary portal system, leads to pituitary adrenocor-
ticotrophic hormone (ACTH) secretion into the pe-
ripheral circulation (Trainer et al, 1995). ACTH in
turn triggers adrenal glucocorticoid (GC) release and
production. Once GCs are secreted, approximately
90% are bound to GC-binding globulins and albu-
min, whereas unbound or free GCs are responsible for
GC effects. The primate GC is cortisol, although most
rodents secrete corticosterone from the adrenals; the
plasma half-life of cortisol is 70 to 90 min (Tyrrell
et al, 1994). The HPA axis is highly sensitive to ev-
eryday challenges in animals and humans (McEwen,
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Figure 1 The HPA axis and inflammation. Various stressors can
activate the HPA axis. The hypothalamus is stimulated to secrete
CRH, which leads to ACTH secretion into the peripheral circu-
lation. ACTH in turn triggers adrenal GC release and production.
The CRH system is inhibited by GCs in a negative feedback loop.
TNF-α and IL-1 are produced from inflammatory sites and are po-
tent activators of the HPA axis. IL-6 acts synergistically with GCs to
stimulate the hepatic secretion of acute phase proteins. Although
GCs are widely known for their anti-inflammatory actions, “(−),”
more recently also proinflammatory effects have repeatedly been
reported, “(+) ?” HPA=hypothalamic-pituitary-adrenal; CRH=
corticotrophin-releasing hormone; ACTH= adrenocorticotrophic
hormone; GCs= glucocorticoids; IL= interleukin; TNF= tumor
necrosis factor; (+) = enhancing; (−) = suppressing.

2000; Ottaviani and Franceschi, 1996). GCs, as the
main effectors of the HPA axis, are released into
the bloodstream and induce systemically a variety
of physiological changes in different organs/organ
systems of the body. For example, energy is mobi-
lized from storage sites and energy delivery is in-
creased in parts of the nervous system, muscles, and
stressed body sites. In synergy with catecholamines,
GCs increase the cardiovascular tone. Further-
more, energetically expensive and, at the very mo-
ment, nonessential processes like growth, reproduc-
tion, food uptake, and parts of the immune system are
suppressed (Munck et al, 1984, 1994; McEwen et al,
1986; Sapolsky et al, 2000). An impaired stress re-
sponse can have deleterious consequences: Patients
with Addison’s disease suffer from adrenal dysfunc-
tion, which results in failure to respond to even minor
stressors (addisonian crisis) and can lead to coma or
death if the patients are not treated with GCs. It has
also been proposed that a disruption of the HPA axis
in animals could explain increased susceptibility to
autoimmune diseases (Sternberg et al, 1989; Calogero
et al, 1992).

Although these GC-induced changes serve to pro-
mote homeostasis and are essential for survival, it
has been found that under certain circumstances,
exposure to an excess (acute and chronical) of GCs
can also have serious negative side effects on var-
ious target tissues of the body. Elevated GC lev-
els is a common feature of chronic stress, and is
seen, for example, in caregivers of dementia pa-
tients, who show impaired cell-mediated immu-
nity and thus an increased vulnerability to in-
fection (Vedhara et al, 1999; Bauer et al, 2000).
The concept of a “eucorticoid state” (Munck et al,
1984; Burchard, 2001) recognizes that neither too
little (absent/impaired cortical function) nor too
much GC (pharmacological dosing/hyperfunction) is
beneficial.

How are GCs able to induce these rapid sys-
temic physiological changes? First, within minutes
after activation of the HPA axis, GCs are being re-
leased from the adrenal glands; second, GCs are hy-
drophobic molecules, which enables them to enter
any cell through the hydrophobic cell membrane;
and third, the intracellular cytosolic GC receptors
have a widespread distribution throughout tissues.
GC effects are mediated by either the high-affinity
mineralcorticoid receptor (MR) or the low-affinity
glucocorticoid receptor (GR) (De Kloet et al, 1998;
Birnstiel et al, 1995). Binding of GCs to these recep-
tors leads to the dissociation of a heat-shock pro-
tein from the receptor, followed by receptor dimer-
ization, which then triggers the nuclear translocation
of the ligand–receptor dimer complex. In the nucleus,
the complex binds to specific DNA sequences called
glucocorticoid responsive elements (GREs) and in-
duces/facilitates transcription of the respective genes
(De Bosscher et al, 2000; Boumpas et al, 1993). How-
ever, some effects may not require receptor dimeriza-
tion but may occur primarily through protein-protein
interactions (Kellendonk et al, 1999). The expres-
sion of an estimated 1% of genes may be regulated
by GCs, which may be either up- or down-regulated.
Given this large number of genes influenced by GCs,
it is hardly surprising that the effects of different
steroid interactions are rather complex and therefore
the therapeutic use of GCs has to be carefully evalu-
ated by consideration of beneficial versus potentially
harmful effects. Regarding (neuro)inflammation, it is
important to note that besides the psychological and
physiological stimuli mentioned before, proinflam-
matory cytokines such as interleukin (IL)-1 proved
to be potent stimulators of the HPA axis (Figure 1;
Besedovsky et al, 1986; Berkenbosch et al, 1987;
Sapolsky et al, 1987).

Because of the complex nature of the theme,
this review has to integrate findings from the dis-
ciplines of neurobiology, neurendocrinology, and
(neuro)immunology. By giving a broad overview of
GCs, the stress response, and adaptive and maladap-
tive effects, we have introduced some basic concepts
of endocrinology that are essential to understanding
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the even more complex mechanisms when the en-
docrine, nervous, and immune systems interact dur-
ing central nervous system (CNS) inflammation. Be-
fore dealing with this most complicated topic, where
all three physiological systems act simultaneously
and influence each other, it is useful to first fo-
cus on adverse GC effects in the CNS and then on
interactions between the nervous and the immune
systems. After that, we consider GC effects in inflam-
mation, thereby emphasizing possible differences be-
tween the well-characterized GC effects on peripheral
inflammation and the so far much less studied GC ef-
fects on CNS inflammation. It will become clear that
this review is not just merely summarizing and up-
dating well-known anti-inflammatory GC effects, but
is also showing a quite unexpected and very different
side of GCs in CNS inflammation.

Adverse glucocorticoid effects in the central
nervous system

In the brain, GCs feed back negatively onto the
hypothalamus (Figure 1), thereby inhibiting their
own overproduction and maintaining homeostasis
(Jacobson and Sapolsky, 1991; Lilly and Gann, 1992).
Although most cells in the brain predominantly ex-
press GRs, principal cells of the limbic system often
contain MRs as well as GRs (Joels, 2001). The hip-
pocampus, for example, a brain part vital for learn-
ing and memory, has one of the highest GC recep-
tor concentrations in the brain (McEwen et al, 1986;
Sapolsky, 1994), and is therefore particularly sen-
sitive to GC effects. Acute stress seems to facilitate
the formation of memories of events associated with
strong emotions (McGaugh, 2000; Meaney, 1988).
Sustained exposure to GCs, however, seems to con-
tribute to impairment of cognitive function and pro-
mote atrophy of brain structures such as the den-
drites of pyramidal neurons in the CA3 region of
the hippocampus (McEwen et al, 1995; Magarinos
et al, 1999; Sapolsky, 1992). Magnetic resonance
imaging studies in humans have shown that GC-
related disorders such as Cushing’s disease or post-
traumatic stress disorder are assocociated with at-
rophy of the whole hippocampus (Sapolsky, 1996;
McEwen and Magarinos, 1997). However, it is not
known whether the loss of total volume is due to the
atrophy of the dendrites on a cellular level. GCs have
also been found to inhibit neurogenesis in the den-
tate gyrus of the hippocampus (Gould et al, 1997,
1998). There have been reports that stress lasting
many months or years can kill hippocampal neurons
directly (Landfield et al, 1981; Sapolsky et al, 1985);
it remains unclear whether this is a physiological or
pharmacological effect.

A few days of stress/GC exposure does not kill
the neurons but has been shown to impair the ca-
pacity of neurons to survive during a neurological
insult, such as ischemia, trauma, seizure, exposure

to gp 120, oxygen radicals, or beta-amyloid, and
eventually exacerbates the resulting neuropathologi-
cal damage (Sapolsky and Pulsinelli, 1985; Sapolsky,
1985; Koide et al, 1986; Miller and Davis, 1991;
Stein-Behrens et al, 1992). In these neurological dis-
orders, the injury and death of neurons is caused at
least in part by overstimulation of receptors for exci-
tatory neurotransmitters such as glutamate (Whetsell,
1996; Beal, 1992; Lipton and Rosenberg, 1994). A
massive increase of extracellular glutamate results in
prolonged depolarization of neurons, inducing fur-
ther glutamate release and in turn increase in in-
tracellular Ca2+-levels, which then activates Ca2+-
dependent enzymes (e.g., proteases degrading the
cytoskeleton), and eventually leading to neuronal cell
death. This pathophysiological mechanism is called
excitotoxicity (Olney, 1978) and involves a com-
plex series of events over time (Figure 2). GCs
have been found to exacerbate the extent of neu-
rological necrotic cell death. A variety of different
primary physiological GC effects on neurons have
been identified that could contribute to the overall
“endangering” effect: (1) Interfering with neuronal

Figure 2 Excitotoxic brain injury and inflammation. Energy fail-
ure leads to the depolarization of neurons, causing a massive
release of excitatory neurotransmitter (e.g., glutamate). The in-
creased extracellular glutamate results in continuous excitation of
neurons, inducing further glutamate release, ATP depletion, and
a dramatic increase in intracellular Ca2+ levels, which then ac-
tivates Ca2+-dependent enzymes (e.g., proteases, lipases, peroxi-
dases), and eventually leading to neuron death. Free radicals are
generated, which damage membranes; injured neurons and glial
cells secrete certain cytokines such as IL-1 or TNF-α. Several of
these molecules produced during brain injury (cytokines, free rad-
icals) also act as potent inflammatory mediators, which activate
microglia and lead to the infiltration of blood-borne inflammatory
cells into the brain parenchyma. Na, sodium; Ca, calcium; IL, in-
terleukin; TNF, tumor necrosis factor.
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energy metabolism (e.g., down-regulation of glucose
uptake); (2) suppression of neuroprotective mech-
anisms (e.g., down-regulation of radical-scavenging
enzymes such superoxide dismutase); and (3) exacer-
bation of excitotoxicity via increased synaptic gluta-
mate concentrations and increased cytosolic calcium
mobilization. Although some of these effects are sec-
ondary to the disruptive effects of GCs on neuronal
energetics, some are direct and energy independent
(Kerr et al, 1989; Joels and de Kloet, 1989; Bhargava
et al, 2000).

In excitotoxic brain injury, a large part of neurons
seem to die by necrosis. In contrast to apoptotic cell
death, necrotic cells swell and burst, releasing
proinflammatory mediators. As shown in Figure 2,
neuronal tissue injury (e.g., caused by direct trauma,
ischemia/excitotoxicity, or viral infections) also in-
duces a well-defined inflammatory reaction in the
CNS.

CNS and inflammation

The brain has long been regarded immunologi-
cally privileged because of the blood-brain barrier
(Dermietzel, 1975; Risau and Wolburg, 1990), the
lack of professional antigen-presenting cells, the very
low expression of major histocompatibility complex
(MHC) I and MHC II molecules (Wekerle et al, 1986),
and the prolonged survival of tissue transplants. In
fact, studies over the last 10 years proved that the im-
munoprivileged status of the CNS is not due to the ab-
sence of the imune system in the CNS but reflected an
active process, which includes a dynamic interac-
tion between the objectives of the imune response
and the specialized needs of the CNS with its highly
specialized and sensitive neurons (Ferguson and
Griffith, 1997; Dalakas, 1995; Becher, 1998). This
means that immune surveillance and immune func-
tion are minimal under healthy conditions but are
inducible whenever required. It is important to dif-
ferentiate between two major parts of the immune
system: On the one hand, there is the adaptive im-
mune system, which involves T/B lymphocytes, re-
sponsible for specific antigen recognition and long-
lasting protection after vaccination. This adaptive
system can also be responsible for deleterious au-
toimmune diseases such as multiple sclerosis or
bystander damage during viral or bacterial infec-
tions. On the other hand, there is the innate, non-
specific immune system, where the main players
are the short-lived but fast-acting neutrophil gran-
ulocytes and longer lived macrophages. These cells
migrate upon activation into the injured tissue and
provide host defense by phagocytosis and release of
cytotoxins. After that, these cells play also a major
role in tissue remodeling and wound healing. How-
ever, an inadequate or to prolonged immune reac-
tion might be an important factor in neurodegener-
ative diseases or stroke. Although being part of the

innate immune system, macrophages also interact
with the adaptive system by presenting antigen to
T lymphocytes.

Accumulating evidence during the last decade
has shown that many neurological insults and neu-
rodegenerative disorders are also accompanied by a
marked acute inflammatory reaction. This inflamma-
tion is characterized by infiltration of blood-borne
granulocytes and monocytes/macrophages into the
respective brain parenchyma as well as activation of
CNS resident microglial cells, astrocyte swelling, and
the expression of cytokines, adhesion molecules, and
other inflammatory mediators (Perry and Gordon,
1991; Dirnagl et al, 1999; Feuerstein et al, 1998; Beal,
1995; Lee et al, 1999). The expression of proinflam-
matory transcription factors such as nuclear factor
kappa B (NF-κB) and hypoxia-inducible factor 1 has
been found to be triggered by the Ca2+-related activa-
tion of intracellular second messenger systems, the
increase in oxygen free radicals, products of mem-
brane peroxidation, and deprivation of oxygen and
nutrients (O’Neill and Kaltschmidt, 1997; Ruscher
et al, 1998). Consequently, the injured brain cells
produce proinflammatory cytokines like IL-1α, IL-
1β, or tumor necrosis factor alpha (TNF-α) (Rothwell
et al, 1996). Adhesion molecules such as intercellu-
lar adhesion molecule-1 (ICAM-1) are up-regulated
on endothelial cells of the CNS microvasculature
and interact with surface receptors (e.g., lymphocyte
function-associated antigen [LFA-1]) on neutrophils
in the bloodstream. The neutrophils adhere to the
endothelium, migrate through the vascular wall
and into the tissue (diapedesis). Macrophages are
usually the second wave of tissue-infiltrating cells
after the neutrophils (Iadecola, 1997). Recruitment
of these peripheral immune cells, as well as mi-
gration of microglia, are regulated by chemokines
such as monocyte chemoattractant protein (MCP-1),
which are expressed by astrocytes (Ransohoff and
Tani, 1998), or the neuron-derived chemokine
fractalkine (Chapman et al, 2000). There is consider-
able evidence that the inflammation is contributing
significantly to the developing brain damage by such
mechanisms as releasing neurotoxic substances,
such as cytokines or free radicals (Beal, 1995;
Barone and Feuerstein, 1999; McGeer and McGeer,
1999; Sanderson et al, 1999; Vila et al, 2000). In
experimental models of stroke, inflammation seems
to contribute to cerebral ischemic injury (Becker,
2001). The importance of inflammatory reaction in
the pathogenesis of brain injury has been reviewed
previously (Feuerstein et al, 1998; Stoll et al, 1998;
del Zoppo et al, 2001). The role of inflammation
in brain injury, however, is a controversial subject
in neurology because a growing number of recent
studies suggest that the impact of inflammatory
mediators may actually be beneficial in the recovery
from brain damage (Feuerstein and Wang, 2001;
Schwartz and Moalem, 2001; Kerschensteiner et al,
1999; Rapalino et al, 1998). The imune response
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at the right time and extent certainly could serve
an important function in tissue reconstruction and
remodeling, just as it does in the process of wound-
healing in the periphery. This is reflected in the
controversial literature about the role of proinflam-
matory cytokines in stroke or seizures, being either
neurotoxic or neuroprotective (Yoles et al, 2001).
For example, mice overexpressing IL-6 and TNF-α
in glia develop both seizures and neurodegeneration
(Campbell et al, 1993; Akassoglou et al, 1997), on the
other hand, mice lacking TNF-α receptors sustain
larger infarcts than wild-type mice (Bruce et al, 1996;
Cheng et al, 1994; Gary et al, 1998). A clinical trial
using a monoclonal antibody to ICAM-1 (Enlimomab
Study) aiming at shutting down the inflammatory
response after brain injury has failed to deliver any
beneficial effect in stroke patients (DeGraba and
Pettigrew, 2000; De Keyser et al, 1999). Recent data
(Iadecola and Alexander, 2001), however, indicate
that immune activation induced by the heterologous
protein as well as insufficient preclinical data may
have played an important role in the failure of this
trial. In summary, even though the understanding
of role of inflammation might have to be modidfied
under certain circumstances, there is still over-
whelming evidence that proinflammatory mediators
do play an important part at certain stages of brain
injury and contribute to the developing damage.

The innate immune sytem, with its ability to pro-
mote a fast, acute inflamation at target sites, seems
also to play an important role in the pathogenesis of
Alzheimer’s disease and other neurodegenerative dis-
orders (McGeer and McGeer, 1994, 1995, 1999). Large
numbers of reactive microglia have been identified
in CNS lesions. Microglia represent the phagocytic
system of the brain, very similar to the blood-borne
macrophages, and release upon stimulation poten-
tially neurotoxic products such as excess glutamate
or free radicals (respiratory burst) (Banati et al, 1993;
Kreutzberg, 1996; Neumann, 2001). Neuronal popu-
lations in close proximity to activated microglia are
exposed to proinflammatory molecules such as IL-1α
(Walker et al, 1995), TNF-α (Hetier et al, 1991), and
superoxide anions (Colton et al, 1996). The impor-
tant role of inflamation was confirmed by studies in-
vestigating kainic acid–induced cell death (Akiyama
et al, 1994), animal models of acute cerebral ischemia
(DeGraba, 1998; Nogawa et al, 1997; Feuerstein et al,
1998), stroke (Beamer et al, 1998; Becker, 1998),
and acquired immunodeficiency syndrome (AIDS)-
related dementia (Adamson et al, 1996; Griffin et al,
1994). Therefore inflammation has been attributed to
wide aspects of secondary injury phenomena, such
as lipid peroxidation, free radical production, and
edema formation. According to these findings, anti-
inflammatory drugs should have a beneficial effect
in the context of a neurological insult; suppression
or inhibition of the immune response should amelio-
rate the neuronal tissue damage. As discussed later
in this review, GCs did not prove to be very suc-

cessful in the treatment of a variety of neurological
insults.

Glucocorticoids and inflammation: Challenging
the dogma
Glucocorticoids have been used widely for the treat-
ment of diseases associated with activation of the
immune system since their original application in
the late 1940s (Hench et al, 1949). This work was
awarded the Nobel Prize for medicine and provided
the foundation for the dogma that GCs are uni-
formly immunosuppressive. The use of GCs in the
treatment of various clinical disorders such as au-
toimmune diseases, chronic inflammation, or trans-
plant rejection has been proven successful. The ther-
apeutic value of GCs is attributed to their potent
anti-inflammatory and immunomodulatory effects
(Table 1, anti-inflammatory effects) on T-cell activa-
tion, adhesion molecule expression, cell migration,
and cytokine production (Cato and Wade, 1996). GC-
mediated reduction of leukocyte infiltrate, for ex-
ample, occurs via the down-regulation of adhesion
molecules, such as ICAM-1, endothelial-leukocyte
adhesion molecules (ELAM-1), and vascular cellu-
lar adhesion molecule (VCAM-1) (Cronstein et al,
1992). In addition, monocyte and neutrophil recruit-
ment during acute inflammation has been found to
be under the negative modulatory control of the
GC-induced lipocortin-1 (Getting et al, 1997). This
clearly shows that GCs have anti-inflammatory effects
in the periphery.

GCs have also been used to treat inflammatory dis-
eases within the CNS, such as edema arising from
brain tumors (Barnes and Adcock, 1993; Galicich
et al, 1961), viral encephalitis, bacterial meningitis
(Coyle, 1999), or to improve recovery from acute ex-
acerbation in multiple sclerosis patients (Fillipini,
2000). Patients with malignant brain tumors are often
treated with GCs to reduce vasogenic brain edema.
In about 50% of cases, all clinical signs disappear
(Vecht, 1998); however, GC treatment seems to pro-
vide a survival advantage to both normal and tumor
cell types (Newton et al, 2001). Even low doses of dex-
amethasone were found to inhibit significantly the
infiltration of brain tumors by lymphocytes and mi-
croglia (Badie et al, 2000), thus suppressing the cellu-
lar immunity against the tumor. The findings in these
cases, showing that GCs also had anti-inflammatory
effects in the CNS, gave rise to the assumption that
GCs should be uniformly anti-inflammatory in all
kinds of different CNS injuries, including hypoxia-
ischemia and seizure. Accordingly, GCs should ame-
liorate damage during these neurological insults by
suppressing the acute inflammation; but instead, as
mentioned before, GCs have been found to increase
neuron loss. Given the assumed anti-inflammatory
properties of GCs in these neurological insults, the
most likely explanation for these seemingly contra-
dictory findings would be that the harmful GC effects
on neuronal survival ability simply outweigh the
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Table 1 Glucocorticoid effects on inflammation

Anti-inflammatory a Proinflammatory b

Lymphocytes (adaptive)
Decreased cytokine-induced proliferation Enhanced immunglobulin synthesis
Decreased cytotoxicity
Decreased cytokine production (IL-1, IL-2)
Induction of apoptosis (Lymphopenia)

Neutrophil granulocytes (innate)
Decreased extravasation Peripheral neutrophilia (mobilization of the “bone marrow reserve”)
Decreased adhesion molecule expression Delayed apoptosis
Decreased phagocytosis
Decreased free radical generation
Decreased chemotaxis

Macrophages/monocytes (innate, adaptive)
Decreased extravasation Induction of macrophage migration inhibitory factor (MIF) expression
Inhibition of differentiation
Decreased phagocytosis
Decreased MHC I and II expression
Decreased antigen presentation

Miscellanous
Decreased adhesion molecule expression (e.g., Potentiation of acute phase reaction (liver)

ICAM-1, VCAM-1)
Decreased pro-inflammatory cytokine production Increased pro-inflammatory cytokine receptor expression (e.g., IL-1 receptor)

(e.g., IL-1α/β, TNF-α, IL-6, IL-2)
Inhibition of cyclooxygenase-2 synthesis (COX-2) Improved woundhealing

Stimulation of 5-lipoxygenase expression

aReferences by first authors: Marx, 1995; Kern, 1988; Goulding, 1998; Perretti, 1994; Chrousos, 1995; Zuckerman, 1989; Barber, 1993;
Burchard, 2001; Mukaida, 1991; Bailey, 1988.
bReferences by first authors: Burton, 1995; Cox, 1997; Wiegers, 1998; Wilckens, 1997; Chrousos, 1995; Davis, 1991; Donnelly, 1997; Liles,
1995; Calandra, 1995.

protective anti-inflammatory effects. There is, how-
ever, another possible explanation. During the past
decade, numerous studies have shown that GCs can
also have stimulatory or permissive effects on im-
mune function (see Table 1, proinflammatory effects),
suggesting that the current concept of uniformly anti-
inflammatory GC effects is an oversimplification of
GC physiology and needs to be extended.

GCs have been shown to act synergistically with
exogenously added cytokines in the periphery.
In hepatic cell cultures (Baumann and Gauldie,
1995) as well as in rats (Nishio et al, 1993), GCs
strongly potentiate the IL-1 and IL-6–induced ex-
pression of acute phase proteins. Synergistic ef-
fects between GCs and IL-1 and IL-6 have also
been observed in human B cells, potently induc-
ing the production of IgG and IgM (Emilie et al,
1988). Other biological responses to a variety of cy-
tokines such as IL-2 (Fernandez-Ruiz et al, 1989),
Interferon (INF)-γ (Bergsteindottir et al, 1992) and
granulocyte colony-stimulating factor (G-CSF) are
also enhanced in the presence of GCs.

A few studies have even shown that GCs pro-
mote the production and release of several cytokines,
such as IL-6 and TNF-α (Liao et al, 1995; Alcorn
et al, 1992). Despite the proven ability of GCs to sup-
press proinflammatory cytokine expression, there are
a large number of studies showing that the expression
of many cytokine receptors are potently upregulated
by GCs. To date, it has been shown that membrane-
bound receptors for IL-1, IL-2, IL-4, IL-6, IFN-γ ,

G-CSF, and TNF-α are induced by GCs on several
cell types (Wiegers and Reul, 1998). Up-regulation
of membrane-bound receptors and associated sig-
nal transduction components enhances the effects,
whereas up-regulation of soluble receptors (“decoy
receptors”) can attenuate the effects of the respective
cytokine; soluble receptor up-regulation by GCs has
only been shown for IL-1 and TNF-α (Wilckens and
De Rijk, 1997; De Rijk, 1994). Furthermore, the com-
mon signal transducer gp130 has been found to be
augmented by GCs (Pietzko et al, 1993; Schooltink
et al, 1992); this subunit is shared by several cy-
tokine receptors such as the IL-6, IL-11, leukemia in-
hibitory factor (LIF) receptors. Thus, GCs are able to
potentiate the action of several cytokines by increas-
ing the expression of a single, common subunit. In
studies on patients with sepsis/septic shock, the syn-
thetic GC methylprednisolone elevated proinflamma-
tory cytokine serum levels, and not only failed to
have any beneficial effect, but even increased mor-
tality rate in some patient groups (Bone et al, 1987).

Recent studies indicate yet another ability of phys-
iological GC levels to be proinflammatory, namely
by inducing synthesis of macrophage migration in-
hibitory factor (MIF) (Donnelly and Bucala, 1997;
Leech et al, 1999; Bucala, 1996). MIF was one of the
first cytokines to be identified and was named be-
cause of its ability to prevent the random migration
of macrophages in culture (David, 1966). Research
since then revealed a broad range of proinflammatory
actions of MIF such as induction of macrophage
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TNF-α synthesis, up-regulation of phagocytosis, in-
duction of nitric oxide synthase activity, and playing
an important role as a cofactor in T-cell activation
(Donnelly and Bucala, 1997; Juettner et al, 1998).
Thus, amid the textbook picture of GCs being anti-
inflammatory in the periphery, there are numerous
instances where they are anything but. Recent work
suggests some instances of proinflammatory GC ef-
fects in the CNS as well.

A profound proinflammatory effect of GCs on the
innate immune system, which also plays a major
part in CNS inflammation, is the mobilization of
the so called “bone marrow reserve” of granulo-
cytes, which results in a pronounced peripheral neu-
trophilia (Goulding et al, 1998). Several studies even
observed that stress-induced increases in GC con-
centrations enhanced the adaptive immune response
by redistributing leukocytes to local areas of in-
jury or infection (Dhabhar et al, 1996; Dhabhar and
McEwen, 1996, 1997). Several investigators found a
GC-induced selective suppression of cellular adap-
tive immunity (T cells) and enhancing of humoral
(B cells, antibodies) immunity (see Elenkov et al,
1999, for review).

In a recent study, dexamethasone treatment failed
to down-regulate the cytokines IL-1α and TNF-α af-
ter chemically induced hippocampal injury in mice
(Bruccoleri et al, 1999). GCs are of no therapeutic
benefits in stroke patients (Millikan et al, 1987); non-
steroidal anti-inflammatory drugs exert a stronger
protective effect in Alzheimer’s disease (Asanuma
et al, 2001; Breitner, 1996), and several studies ar-
gue even against their use in the treatment of post-
stroke edema (Fishman, 1982; Tominaga et al, 1988).
Furthermore, GC treatment failed to have beneficial
effects in a recent clinical trial with Alzheimer’s pa-
tients (Aisen et al, 2000) and was also not recom-
mended for treatment of Guillain-Barré syndrome
(Hughes, 2001), a disease involving inflammation
of peripheral nerves. Administration of dexametha-
sone (Kiwerski, 1993; Hall and Braughler, 1982) and
methylprednisolone (Bracken et al, 1990, 1997), how-
ever, have resulted in beneficial effects in cases of
spinal cord trauma. However, because these data are
now strongly criticized (Nesathurai, 1998) because
of the study design and the inability of several other
groups to reproduce the results, the observed ben-
eficial GC effect remains at least questionable. Fur-
thermore, a number of studies indicate that either
GCs failed to have anti-inflammatory actions in the
CNS under certain circumstances or their potentially
beneficial anti-inflammatory effects were outweighed
by their damaging effects on neurons. Even more
surprisingly, some studies even demonstrated proin-
flammatory GC effects in the CNS: 5-lipoxygenase
(5-LO), the enzyme crucial for the biosynthesis of in-
flammatory leukotrienes, is present in neurons and
5-LO expression has been found to be increased in the
rat brain after GC treatment (Uz et al, 1999) and dur-
ing aging (Uz et al, 1998). Because aging is also associ-

ated with increased GC levels, it is certainly interest-
ing to look at the effects of aging on the immune sys-
tem. Despite a general immunosenescence (decrease
of immunological parameters such as phagocytosis,
cell trafficking, etc.), some increased immune func-
tions like IL-4, IL-6, and TNF-α production could
be observed (Straub et al, 2000). All these examples
clearly demonstrate that GCs not only suppress im-
mune function but have also the potential to enhance
certain parts of the immune system.

We could also confirm this in a recent study from
our group (Dinkel and Sapolsky, 2003). In order to
reconcile the anti-inflammatory and potentially ben-
eficial GC effects with their ability to worsen the
outcome after a neurological insult, we addressed
the question how this acute inflammatory reaction
is affected by different levels of GCs. We inves-
tigated the GC effect on lesion size, cellular in-
flammatory infiltrate, and mRNA cytokine pattern
after excitotoxic brain injury in the rat hippocam-
pus. Kainic acid was injected into the hippocampus
of adrenalectomized/basal GC–supplemented, intact,
and corticosterone pretreated rats. First, we could
confirm that elevated GCs accelerated and exacer-
bated the kainate-induced neuronal damage. In all
three groups, activated microglia as well as blood-
borne granulocytes and macrophages were detected
after kainate injection. Compared to basal GC lev-
els, acute high GC levels reduced these inflamma-
tory cells at early timepoints, but cell numbers were
increased later on, suggesting a delaying and proin-
flammatory effect of GCs. Even more surprisingly,
chronically elevated GC levels resulted in rapid in-
filtration and a further increase of cellular infiltrate
compared to the other two groups. In contrast to
their immunosuppressive effects in the periphery
(reduction of cellular inflammatory infiltrate), GCs
seemed to have a proinflammatory effect (increase
of total inflammatory cell numbers) in this model of
CNS inflammation. In the periphery, GCs reduce in-
flammatory infiltration by suppressing ICAM-1, an
adhesion molecule expressed on endothelial cells,
which is necessary for extravasation of granulo-
cytes and macrophages from the bloodstream into
the inflamed tissue (Cato and Wade, 1996; Perretti
and Flower, 1994). In the context of a neurological
insult, GCs could alter blood-brain barrier perme-
ability to facilitate recruitment of blood-borne cells
into the CNS. This would dramatically increase the
number of infiltrating cells, considering reports that
GCs delay apoptosis in neutrophils and cause pe-
ripheral neutrophilia (see Table 1; proinflammatory
effects).

CNS cytokine expression is normally low
(Vitkovic, 2000). As part of the inflammatory
reaction in various neurological insults, an increased
expression of proinflammatory cytokines (e.g. IL-1α,
TNF-α) has been detected (Dirnagl, 1999; Iadecola
and Alexander, 2001; de Bock et al, 1996). We
found elevated mRNA levels of the proinflammatory
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cytokines IL-1α, IL-1β, IL-6, and TNF-α in all three
groups after kainate injection. According to the
timepoints of detection, these cytokine mRNAs
seemed to have been produced by neurons and
glial cells, thus providing a certain cytokine mi-
croenvironment that also affects the later infiltrating
inflammatory cells. Consistent with known pe-
ripheral anti-inflammatory GC effects (Table 1),
acute high GC levels inhibited IL-1α, IL-1β, TNF-α,
but not IL-6, mRNA synthesis compared to basal
GC levels. In contrast, chronically high GC levels
caused an increase of all these four proinflammatory
cytokine messages compared to basal GC levels, thus
revealing yet another unexpected proinflammatory
effect of GCs in CNS inflammation. Commensurate
with this, GCs are of no particular benefits in stroke

Table 2 Neurotropic viruses (Peterson et al, 1997): the expression of cytokines during infection, physiological symptoms, and the
presence or absence of a glucocorticoid response element (GRE) in the viral genome

Cytokines

IL-1α/β IL-6 TNF-α
Physiological symptom(s)

and pathology GRE e

Herpes viruses
Herpes simplex virus I ↑ β (1)

CNS
↑ (2) ↑(3) Encephalitis/persistent + (4)

(Neuronal) latent infection
Cytomegalovirus ↑α (5) ↑(5) ↑(5) Encephalitis ± (6)c

Epstein-Barr Virus ↑α/β (7) ↑(8) ↑(8) Encephalitis + (9)
Human herpesvirus 6 0 β (10) — — Encephalitis/encephalopathy ±d

B virusa — — — Encephalitis ±d

Enteroviruses
Polioviruses (Neuronal) ↑(11) ↓(12)e ↓(14) ↑(11)f Poliomyelitis/paralysis —
Coxsackieviruses ↑(11) ↑(13) ↑(11) Myocarditis/meningitis —
Echoviruses ↑β (15) — ↑(15) Meningitis —

CNS CNS
Retroviruses

HIV ↑β (16) ↑ (17, 18) ↑ (16, 19) Dementia + (20)
CNS CNS CNS

Human T lymphotrophic ↑α (21) ↑(22) ↑(23) Chronic demyelination —
virus type I CNS

Rabies virus (Neuronal) ↑β (24) ↑(24, 25) ↑(25) Encephalopathy —
CNS CNS CNS

Mumps virus ↑β (26, 27) ↑(28) ↑(27), 0 (26) Encephalitis —
CNS CNS CNS

Lymphocytic choriomeningitis ↑(29) — ↑(30) Meningitis —
virus CNS

Measles virus ↑(27, 31, 32, 33) ↑(32, 33) ↑(31, 32, 33) Encephalitis, SSPEb —
Rubella virus — ↑(27) — Encephalitis —
JC virus — — — Demyelination —
Borna disease virus (Neuronal) 0 β (34) — 0 (34) Behavioral abnormalities —

CNS CNS

aCercopithecine herpesvirus (B virus).
bSubacute sclerosing panencephalitis.
cReactivation in the presence of glucocorticoid.
dPresence of GRE unknown but probable.
eIL-6 secretion inhibited in infected cells.
fTNF receptor transport to cell membrane inhibited in infected cells.
Arrows indicate an increase or decrease in cytokine level, CNS indicates that expression of a particular cytokine was determined within
and during infection of the central nervous system. (Neuronal) indicates primary site of infection and/or primary ecological niche of the
respective virus versus opportunistic infection of the brain parenchyma.
References by first authors: (1) Ben-Hur, 2001. (2) Noisakran, 1998. (3) Gosselin, 1992. (4) Hardwicke, 1997. (5) Ruzek, 1997. (6) Tanaka,
1984. (7) Foss, 1994. (8) Andersson, 1996. (9) Kupfer, 1990. (10) Inagi, 1996. (11) Vreugdenhil, 2000. (12) Dodd, 2001. (13) Heim, 2000.
(14) Neznanov, 2001. (15) Nishikawa, 2000. (16) Ilyin, 1997. (17) Koedel, 1999. (18) Zidovetzki, 1998. (19) Nuovo, 1996. (20) Ghosh, 1992.
(21) Mori, 1996. (22) Yamamura, 1998. (23) Fox, 1996. (24) Marquette, 1996. (25) Camelo, 2000. (26) Takikita, 2001. (27) Cavallo,
1992. (28) Joblonowska, 1999. (29) Hildeman, 2000. (30) Nguyen, 1999. (31) Leopardi, 1992. (32) Yamabe, 1994. (33) Schneider-Schaulies,
1993. (34) Sauder, 2001.

patients (Millikan et al, 1987) and their use to control
poststroke edema is even associated with worsening
the aspects of neurological outcome (Fishman, 1982;
Tominaga et al, 1988). Our study showed that in the
context of excitotoxic brain injury, GCs, depending
on the dosage, may exert not only suppressive, but
also permissive, and even strong enhancing effects
on acute inflammation. These effects could further
explain how GCs are worsening the outcome of
neurological insults.

Glucocorticoids and viral infections

Given the number of neurotropic viruses (Table 2),
it may be interesting to address the effect of GCs
on the outcome of viral infection of the brain. A
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number of studies (for a detailed review, see Pearce
et al, 2001) have shown an up-regulation of proin-
flammatory cytokines (Table 2) and in turn cytokine-
mediated increased GC release during viral infec-
tions. The available data examining the stimulation of
the HPA axis by cytokines indicate that depending on
the virus and the respective cytokine pattern, several
immune-endocrine pathways can be invoked. En-
dogenous GCs are capable of modulating the immune
response by supporting protective immunity as well
as suppressing detrimental effects of antiviral immu-
nity such as septic shock. In mice, adrenalectomy be-
fore infection with cytomegalovirus (CMV) results in
lethality but GC replacement prevents virus-induced
lethality (Ruzek et al, 1999). In humans, chronically
elevated GC levels, caused by chronic stress situa-
tions, are associated with enhanced susceptibility to
viral infection (Glaser and Kiecolt-Glaser, 1998).

Because several viral genomes contain GREs
(Table 2), GCs might also influence early phases
of viral infection by stimulating viral replication
via these GREs. Recent findings even indicate that
human immunodeficiency virus (HIV)-1–associated
protein Vpr is able to act as transcriptional activator
and contains a nuclear receptor–binding motif that
binds directly to GR (Kino and Chrousos, 2001).
Therefore, Vpr may stimulate viral proliferation
(facilitation of viral gene transcription) and sup-
press the host immune system by inducing GC
hypersensitivity (GR binding).

In a recently developed animal model for herpes
encephalitis, it was found that treating the animals
with dexamethasone decreased viral load. But in the
presence of acyclovir, a small, nonsignificant increase
in viral load was observed, and acyclovir in com-
bination with dexamethasone did not decrease vi-
ral spread over acyclovir by itself (Thompson et al,
2000). The role of circulating GCs in the pathogenesis
of HSV-1 encephalitis was also examined. Circulating
GCs were removed or blocked by adrenalectomy, hy-
pophysectomy, or receptor blocking. In the absence
of circulating GCs, fever and behavioral changes (mo-
tor hyperactivity and agression) associated with her-
pes encephalitis were not observed, although overall
mortality was unchanged. With GC replacement ther-
apy, the clinical responses to HSV-1 encephalitis was
again observed. IL-10 levels were also measured and
shown to increase with infection only in the presence
of GCs (Ben-Hur et al, 2001). Overall, in the case of
HSV-1, the use of GCs to abrogate the course of in-
fection is unclear. Dexamethasone administration re-
sulted in a worsened neurpathological outcome in
a model human HIV-1 encephalitis in SCID mice
(Limoges et al, 1997). In another study, pneumovirus-
infected mice responded to hydrocortisone treatment
with enhanced viral replication and accelerated mor-
tality (Domachowske et al, 2001). These results indi-
cate that exogenous administration of GCs may be of
limited benefit or even be harmful for treatment of
certain viral infections.

Conclusion

The major finding reported in this review is that
GCs are not always anti-inflammatory and can even
be proinflammatory in peripheral as well as in CNS
inflammation. Although there are not enough stud-
ies yet to begin to delineate rules that explain why
and under what circumstances GCs have anti- or
proinflammatory effects, based on small numbers of
data, there is, however, at least room to speculate
as to what parameters determine the respective GC
effects.

Synthetic versus endogenous GCs
Much of the current understanding of the mecha-
nisms of GC action stems from observations made
with synthetic/exogenous GCs and their effect on
peripheral immune activation. These pharmacolog-
ical agents, such as prednisolone or dexamethasone,
have been proven to be several times more potent
immunosuppressants than endogenous GCs, such as
the primate cortisol and the rodent corticosterone
(Nelson, 1995; Wilckens and De Rijk, 1997; Craig and
Stitzel, 1994); in addition, therapeutic doses are usu-
ally much higher than physiological levels of GCs.
The physiological role of GCs in relation to immune
reactions on the basis of in vitro as well as in vivo data
cannot be solely based on the use of synthetic ligands
without comparison with the endogenous GCs; this
is especially the case because synthetic GCs are ex-
clusively GR agonists and do not bind to MRs. For
example, GCs are bound in the hippocampus by the
high-affinity MR, which is almost entirely occupied
under basal conditions. In contrast, the hippocampus
also contains the low-affinity GR, which is not heav-
ily occupied until stress levels of GCs are achieved.
Therefore, it is certainly questionable whether the ac-
tions of endogenous GCs on inflammation could be
predicted from those observations.

Microenvironment and type of injury
Furthermore, considering the extraordinary mi-
croenvironment of the CNS, one should also be very
cautious in assuming that GC effects seen in periph-
eral inflammation also apply to CNS inflammation.
Our study (Dinkel and Sapolsky, 2001), for example,
investigated effects of GCs on the innate immune
system and neurons/glial cells in the context of
acute CNS inflammation. GCs might down-regulate
cytokine production of certain immune cells, but just
cause the opposite effect in neurons or glial cells.
The effects of GCs are determined by highly specific
regulatory mechanisms, which may also display
tissue specificity. Given the growing appreciation of
the complexity and heterogeneity of various forms of
brain injury, GC use as treatment may find a rational
place in management only of a subset of neurological
insults.
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Chronic versus acute exposure
Another important factor to consider is whether
GCs are elevated acutely or chronically. Chronic
exposure to GCs might induce changes on cer-
tain cell types (e.g., receptor up- or down-
regulation) that result in completely different cel-
lular responses to tissue injury and inflammatory
mediators.

There is convincing evidence for the effectiveness
of GCs in the acute phase of optic neuritis and multi-
ple sclerosis attacks (Brusaferri and Candelise, 2000),
but there is no beneficial GC effect on the progres-
sion of the disabilities. The initial effects of high-
dose therapy occur rapidly, but are lost as the dis-
eases progress. This declining responsiveness to GCs
over time and the known side-effects limit the ther-
apeutic use of GCs in multiple sclerosis and other
autoimmune diseases. Furthermore, there is no con-
sensus about the optimal form, dose, route, or du-
ration of corticosteroid therapy (Noseworthy et al,
2000).

Myasthenia gravis patients who do not respond
well to anticholinesterase treatment are candidates
for GC (prednisolone) therapy. Interestingly, there
is a well-documented early exacerbartion of myas-
thenic weakness immediately after starting high-dose
GC administration (Pascuzzi et al, 1984). In an at-
tempt to avoid this transient exacerbation, treatment
is started at a low dose, then gradually increased, and
eventually (on remission) reduced (Vincent et al,
2001).
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