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Viral infection of the central nervous system elicits a myriad of cellular, vascu-
lar, and neuroimmune factors that contribute to acute, subacute, and chronic
damage to the brain. In response to cellular damage, the host is capable of
producing trophic factors that may protect neuronal, glial, and endothelial
cell populations. Both neurotrophic and angiotrophic factors can also operate
by modulating the neuroimmune response, which plays a central role in the
pathogenesis of the neurodegenerative process. In this regard, crosstalk sig-
naling among host cells, components of the neuroimmune response, and virus
could influence cell fate by production of trophic factors that protect or rescue
neurons vulnerable to viral damage. In this context, the main objective of this
review is to provide an overview of evidence in support of the role of trophic
factors in regulating the neuroimmune response in chronic viral infections of
the central nervous system. Special emphasis is placed on the interaction of the
human immunodeficiency virus (HIV) Tat protein with endothelial, astroglial,
microglial, and neuronal cells, resulting in altered expression of vascular en-
dothelial growth factor, fibroblast growth factor, interleukin-8, and regulation
of calcium flux via CXCR2, which directly influences neuronal cell fitness.
Journal of NeuroVirology (2002) 8, 625—638.
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Introduction

During the process of viral infection of the central
nervous system (CNS), numerous cellular, vascular,
and neuroimmune factors contribute to acute, sub-
acute, and chronic damage to the brain (Gendelman
et al, 1997, 1998). Viral components can dam-
age cells of the brain by both direct and indirect
mechanisms. Cytolytic viruses directly infect neu-
rons and/or glia leading to cell death (Robbins,
1999). Direct pathogenic effects include, for exam-
ple, initiation of neuronal apoptosis by herpes sim-
plex virus-1 (HSV-1), arbor virus, or rabies, usu-
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ally resulting in acute damage to the CNS (Robbins,
1999). Infection of neural cells by noncytolytic
viruses leads to production and activation of as-
trocytes and microglial cells. Activation of glial
cells results in the production of immune factors
such as cytokines and chemokines, which in turn
might promote cell death. Collectively, the term
neuroimmune response (NIR) is now used to re-
fer to this cascade of events involving glial ac-
tivation (Budka, 1991). Indirect damage by viral
agents usually involves the NIR resulting in a pro-
tracted course of disease, as observed in human im-
munodeficiency virus (HIV) encephalitis (HIVE), cy-
tomegalovirus encephalitis (CMVE), and Borna virus
encephalitis (BVE). However, indirect damage me-
diated by the NIR may also contribute to the pro-
cess of cell death in acute viral infection as observed
in lymphocytic choriomeningitis virus (LCMV) (von
Herrath and Oldstone, 1996).

The host-mediated NIR often results in damage to
specific regions of the brain, to particular neural pop-
ulations, and/or in leukoencephalopathy (Robbins,
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Figure 1 Virally induced NIR leading to neurodegeneration. Ac-
tivated HIV-infected monocytes migrate across the BBB into the
brain where they release cytokines and chemokines. Neuroim-
mune factors such as TNF-a, PAF, MMPs, and IL-18 in turn ac-
tivate neighboring astrocytes, microglia, and neurons. Activation
of the NIR leads to dendritic and synaptic damage and cell death
via both autocrine and paracrine pathways. MDM, monocyte de-
rived macrophage; AS, astrocyte; N, neuron; TNF-«, tumor necro-
sis factor-a; PAF, platelet-activating factor; MMPs, matrix metallo-
proteinases; IL-18, interleukin-18.

1999). For example, HSV-1 has a tropism for the
limbic system of the brain but infects different neu-
ronal populations within this region with equal ef-
ficiency (Caccamo and Garcia, 1993). On the other
hand, JC virus (JCV) infection of oligodendrocytes,
the cells that are responsible for myelin production,
results in demyelination, which leads to progres-
sive multifocal leukoencephalopathy (Robbins, 1999;
Major et al, 1992). The NIR involves the production of
numerous factors, such as cytokines and chemokines,
by host cells in response to viral infection. Typically,
macrophages, astrocytes, and microglia are primary
effectors of this response (Poluektova et al, 2001).
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Cytokines and chemokines produced by virally
infected cells induce both autocrine and paracrine
cellular responses in the CNS. Thus, crosstalk with
endothelial cells and pericytes of the blood-brain bar-
rier (BBB) likely contributes to the NIR because these
cells also produce neuroimmune factors. Accumulat-
ing evidence suggests an important role for cytokines
and chemokines in both normal and pathogenic pro-
cesses in the CNS, particularly in neurodegenerative
disorders (Puma et al, 2001; Mrak et al, 1995; Horuk
et al, 1997). Specific pathogenic characteristics of the
virus, along with signaling events triggered by the
NIR, contribute to the host’s cellular response to vi-
ral infection of the CNS. Furthermore, the host’s re-
sponse to viral infection may be both deleterious and
protective to cellular components of the CNS. In gen-
eral, this response can be divided into three broad
categories. First and most widely described is the
virus-induced NIR that leads to neurodegeneration
(Figure 1) (Maggirwar et al, 1999; Johnston et al, 2001;
Nath et al, 1999). For example, in the brain, HIV pre-
dominantly infects cells of macrophage/microglial
origin (Wiley et al, 1986). Infected cells become acti-
vated, producing cytokines and chemokines, leading
to both excitotoxicty and the activation of neighbor-
ing cells (Xiong et al, 2000; Yeh et al, 2000). In point
of fact, tumor necrosis factor-o (TNF-«) and platelet-
activating factor (PAF) produced by activated mi-
croglia, not only amplify the inflammatory response
but also cause considerable neurotoxicity (Persidsky
et al, 2001) (Figure 1).

Secondly, viral exploitation of the host’s immune
system through molecular mimicry allows viral eva-
sion of host-defense mechanisms (Figure 2) (Asensio
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Figure 2 Viral exploitation of host’s immune system by molecular mimicry. ORF 74 of HHV8 mimics the GCP receptor for IL-8 and
activates NF-«B and AP-1, thereby inducing expression of a variety of NI factors leading to cell death. ORF, open reading frame; HHVS,
human herpes virus 8; GCP, G-coupled protein; IL-8, interleukin-8; NF-«B, nuclear factor «B; AP-1, activator protein-1.



and Campbell, 1999; Arvanitakis et al, 1997; Murphy,
2001). In the case of mimicry, the virus mimics
host cytokines, chemokines, and their receptors (for
review see Murphy, 2001; Lalani and McFadden,
1999; Alcami and Koszinowski, 2000), leading to
dysregulation of host-mediated immune responses.
Numerous examples of viral mimicry exist and in-
clude homologues of cytokines and chemokines
or their receptors and also factors with unique
structures not related in primary amino acid se-
quence to neuroimmune factors (Murphy, 2001).
Examples of molecular mimicry by HIV proteins
include Tat that contains CXC and CC motifs and
the exploitation of chemokines receptors by both
gp120 and Tat to promote the NIR and viral infec-
tion of host immune cells (Murphy, 2001; Berger
et al, 1999). Open reading frame-74 of human herpes
virus 8 (HHV8) mimics the G-coupled interleukin-8
(IL-8) receptor, activates nuclear factor «B (NF-«B)
and activator protein-1 (AP-1), and induces expres-
sion of interleukin-1 (IL-1), TNF, IL-8, monocyte
chemoattractant protein-1 (MCP-1), basic fibroblast
growth factor (bFGF or FGF2), and vascular endothe-
lial growth factor (VEGF) (Arvanitakis et al, 1997;
Murphy et al, 2000) (Figure 2). Poxviruses promote
host-cell infection by encoding soluble versions of
receptors for interferons (Smith et al, 1997, 1999).
Viruses such as HIV, CMV, and vaccinia virus incor-
porate CD59 into the viral envelope, thereby protect-
ing themselves from complement lysis (Alcami and
Koszinowski, 2000).

Thirdly, and less well described, are the host-
cell defense responses to both viral and neuroim-
mune components in an attempt to maintain cell
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fitness (Figure 3) (Ramirez et al, 2001; Nath et al,
1996; Benelli et al, 2000). Although cytokines and
chemokines produced during the NIR cause cellular
damage, the host’s response includes production of
trophic elements as well. Although considerable em-
phasis has been placed on understanding the mech-
anisms by which the NIR contributes to neurode-
generative disorders, less information is available on
host responses that may counteract neuronal damage
during viral infection. In this regard, crosstalk sig-
naling among host cells and components of the NIR
and virus could influence cell fate by production of
trophic factors that protect or rescue neurons vulnera-
ble to viral damage. In this context, the main objective
of this review is to provide an overview of evidence
supporting the role of trophic factors in regulating
the NIR during chronic viral infections of the CNS.
Special emphasis will be placed on the interaction of
the HIV Tat protein with endothelial, astroglial, mi-
croglial, and neuronal cells, which results in altered
expression of VEGF, FGF, and IL-8 and in regulation
of calcium flux via CXCR2, which directly influences
neuronal cell fitness.

NIR, trophic factors, and viral infection

Neural trophic factors can be produced by CNS cells
in response to cell injury from viral infection and in-
clude, among others, neurotrophic and angiotrophic
factors (Table 1). Neurotrophins such as nerve growth
factor (NGF), brain-derived growth factor (BDNF),
and neurotrophin 3 (NT3) are produced by neurons
and glial cells to promote neuronal survival and

BDNF { Bcl 2
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Figure 3 Host response to both viral and neuroimmune factors modulates cell fate. Crosstalk among host cells, viral proteins, and
components of the NIR may influence cell fate by inducing trophic factor production. HIV Tat induces expression of VEGF, IL-8, NF-«B,
and MCP-1. The RelA portion of NF-«B, along with the antiapoptotic Bcl-2, work with BDNF and NGF to promote neuronal cell fitness.
Tat, transactivating transcription factor; VEGF, vascular endothelial growth factor; MCP-1, monocyte chemoattractant protein-1; BDNF,

brain-derived neurotrophic factor; NGF, nerve growth factor.
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Table 1 Trophic properties of growth factors

Growth factor Anglotrophic activity Neurotrophic activity Cell type maintained

NGF - +++ Cholinergic neurons

BDNF - +++ Somatostatin-producing neurons

NT3 - ++ Hippocampal neurons

CDNF + ++ Motor neurons

FGF1 + ++ Glutaminergic neurons

FGF2 +++ + Endothelial cells (proliferation and migration)
IL-8 +++ ++ Cholinergic neurons and endothelial cells
VEGF ++++ - Endothelial cells (proliferation and migration)
Endothelin-1 ++ - Endothelial cells

growth (Encinas et al, 2000). Angiotrophic factors
such as bFGF, VEGF, and endothelin are produced by
astroglial and endothelial cells of the BBB and pro-
mote the survival, proliferation, and differentiation
of brain microvascular cells (Sobue et al, 1999; Plate,
1999), to maintain BBB integrity. These factors may
regulate or may be regulated by the NIR and will be
discussed in more detail in following sections (Figure
3). Interactions among trophic growth factors, NIR
components, and viral proteins contribute to cell fit-
ness to influence cell fitness (Figure 4).
Neurotrophic factors play diverse roles during the
progression of CNS infection by promoting increased
viral replication or cooperating with viral and/or
neuroimmune (NI) molecules to enhance neurotrans-
mission. Trophic factors may also provide neuronal
protection against toxic NI components, such as
cytokines, chemokines, and harmful viral products
(Table 1). For example, NGF and NT3 attenuate
rabies infection (Castellanos et al, 2000) and can
protect against HSV1 and HIV infection (Pakzaban

IL-1p
MCP-1
TNF- a
RANTES
MIPl- a, B

and Chiocca, 1994). In contrast, NGF enhances the
replication of Borna Virus Disease (BVD) and other
viruses in glial cells (Carbone et al, 1993). In patients
with viral meningitis, NGF (but not NT3) levels in
cerebrospinal fluid (CSF) are elevated (Mizuno et al,
2000) and likewise in patients with HIVE, levels
of bFGF and NGF are elevated (Boven et al, 1999),
supporting the contention that viral infection pro-
motes growth factor production not only by neurons,
but also by cells of the NI system. Furthermore, in
patients with HIVE, BDNF production by microglia is
increased, suggesting that BDNF may affect neuronal
survival and astroglial response via trkB receptors
(Saarelainen et al, 2001). Interestingly, recent studies
have also shown that gp120 cooperation with BDNF
enhances somatostatin neurotransmission in HIVE,
which otherwise is severely impaired in disease
(Barnea et al, 1999). In addition, NGF and BDNF play
important roles in neuronal survival in HIV infection
by activating NF-« B, thereby inducing expression of
the antiapoptotic Bcl-2 gene, which protects neurons

Figure 4 Interactions among neuroimmune components and trophic factors in neuroprotection and angiogenesis. IL-18, interleukin-1p;
MCP-1, monocyte chemoattractant protein-1; TNF-«, tumor necrosis factor-o; RANTES, regulated on activation normal T cell expressed

and secreted; MIP-1« and -18, macrophage inflammatory protein-1;

GDNF, glial-derived neurotrophic factor; G-protein, G-coupled protein.



from the proapoptotic effects of HIV Tat (Ramirez
et al, 2001) (Figure 3). Other neurotrophic factors
under consideration include insulin-like growth
factor (IGF) and hepatocyte growth factor (HGF);
however, their potential role in regulating the NIR
and HIV toxicity is unclear.

Though not well understood, these somewhat para-
doxical roles of neural growth factors (both neu-
rotrophic and angiotrophic) in response to viral infec-
tion of the CNS may provide insight into the complex
interactions between host and pathogen (Figure 4).
Moreover, understanding such signaling events is
becoming a more attractive concept for chaperon-
ing growth factor interactions in the treatment of
neurodegenerative disorders. Considerable overlap
exists between inflammatory factors and growth fac-
tors in the patterns of secondary gene regulation
during biological responses to factors such as viral
proteins. Convergence of signaling between TNF-«
and Tat with VEGF at the mitogen activated protein
kinase (MAPK) level (Figure 5) in the regulation of tis-
sue factor expression (Mechtcheriakova et al, 2001)
illustrates precisely such crosstalk interactions dur-
ing biological responses. Taken together, accumu-
lating evidence points to crosstalk between growth
factors and components of the NIR in modulating
complex cellular responses during viral infection of
the CNS (Figure 4).

Viral infection then adds a third player into an al-
ready complex network of crosstalk between growth
factors and NI components. Along with trophic
and NI factors, viral proteins participate extensively
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in mediating the host’s cellular response to infec-
tion. Consequently, in addition to growth factors,
cytokines, and chemokines (Figures 3 and 4), we
must also include viral proteins in our discussion
of the role of trophic factors in the host’s neu-
roimmune response (Figure 5) (Barillari et al, 1999)
(Mechtcheriakova et al, 2001; Scheidegger et al, 2001;
Liu et al, 2000). Although numerous examples exist,
HIV provides an excellent model for describing these
signaling interactions in the context of neuronal pro-
tection and maintenance of the BBB (Persidsky et al,
2000; Langford and Masliah, 2001). One striking ex-
ample is the role of fractalkine in HIVE. Fractalkine
is a neuronal chemokine with trophic activity that is
elevated in HIVE patients (Pereira et al, 2001; Tong
et al, 2000). Remarkably, this chemokine also regu-
lates the NIR by modulating the activity and traffick-
ing of macrophages into the CNS (Tong et al, 2000).
Another example observed in HIV infection involves
interactions among VEGF, bFGF, TNF-«, IL-18, IL-8,
and Tat in both neuronal and endothelial cell fitness
(Figures 3 to 5) and is discussed extensively in later
sections.

NI regulation, IL-8 and other trophic factors,
HIV Tat

Interactions between NI factors and neurotrophic fac-
tors play an important role in the pathogenesis of
HIVE (Figures 3 and 4). NI factors such as TNF-«,
IL-18, MCP-1, macrophage inflammatory protein 1

—> Cell Death
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wesnpp [ InBINFKB | ——p |Migration, Angiogenesis
JP_’,; > " Rearranges cell-cell
contacts
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Figure 5 Convergence of signaling among Tat, host cells, and components of the NIR. Tat binds to LRP receptors, leading to cellular
uptake of Tat and translocation to the nucleus. LRP binding by Tat also induces uptake and processing of «-macroglobulin, ApoE4, APP,
and AB. Tat also interacts with glutamate/NMDA receptors, which, along with LRP signaling, can lead to calcium flux, neurodegeneration,
and cell death. Synergy with bFGF promotes Tat binding to oy, 5 receptors to activate collagenase IV, p125FAK, and the PI3K/PKC/ERK
pathways. Tat-mediated release of sequestered bFGF promotes this interaction. Binding of Tat to VEGF receptors induces the production of
NI factors such as IL-18, TNF-«, and IFN-y. ApoE4, apolipoprotein E4; APP, amyloid precursor protein; Ag, amyloid g; LRP, low-density
lipoprotein receptor; NMDA, N-methyl-p-aspartate; PKC, phosphokinase C; IKK2, I«B kinase-2; ay s 5, integrin receptors.
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Figure 6 Convergence of HIV Tat and IL-8 signaling in determining cell fate. HIV Tat induces TNF-« and IL-18 production, leading to IL-8
expression and binding to CXCR2. Binding of IL-8 to CXCR2 initiates G-coupled protein signaling via GDP/GTP exchange and dissociation
of Ga;, from y2/81 subunits. Dissociation leads to PLCS and PIP2 stimulation. PIP2 then initiates the IP3 pathway, leading to calcium
flux, DAG activation, and PKC signaling. IL-8 also promotes HIV replication, which in turn promotes release of Tat by HIV-infected cells.
Tat mimics IL-8, thereby directly converging with IL-8 signaling to mediate cell fate. Gej,, G- inhibitory protein; PLC-8, phospholipase
C-B; PIP2, phosphoinositol phosphate-2; DAG, diacylglycerol; IP3, inositol triphosphate; PKC, phosphokinase C.

(MIP-1¢ and -18), and regulated on activation normal
T cell expressed and secreted (RANTES) produced
by HIV-infected cells and by cells activated in re-
sponse to HIV infection are capable of both directly
damaging neurons or triggering a trophic response
(Benveniste, 1994; Nottet, 1999) (Figure 3). For ex-
ample, TNF-o and IL-18 augment the secretion of
IL-8 by activated glial cells (Horuk et al, 1997). IL-8,
a 10-kDa proinflammatory chemokine with trophic-
like activity implicated in neuronal survival and re-
generation (Araujo and Cotman, 1993; Limatola et al,
2000; Horuk et al, 1997; Xia et al, 1997; Murdoch and
Finn, 2000) (Figure 6).

IL-8, also known as neutrophil-activating peptide
1, belongs to the family of CXC chemokines that in-
clude growth-related oncogenes « and B (GRO) and
granulocyte chemotatic protein 2 (GCP-2), (Murdoch
and Finn, 2000) (Figure 6) and stromal cell-derived
factor-1 (SDF-1). T cells, neutrophils, fibroblasts, and
endothelial and epithelial cells are stimulated by NF-
«B to produce IL-8 (Shi et al, 2001; Choi et al, 2002;
Lee et al, 2002). Moreover, IL-8 attracts T cells, neu-
trophils, basophils, and endothelial cells (Baggiolini
et al, 1997). As one of the first chemokines described
in the brain, IL-8 is produced by monocyte-derived
macrophages, microglia, and astrocytes (Asensio and
Campbell, 1999; Ehrlich et al, 1998; Hesselgesser
and Horuk, 1999). IL-8 binds to CXCR1 and -2 re-
ceptors present on endothelial cells, astrocytes, and
microglia and on cholinergic septal neurons and neu-

rons of the hippocampus, cerebellum, and cortex
(Belperio et al, 2000; Puma et al, 2001; Mahieux et al,
2001; Horuk et al, 1997; Meucci et al, 1998) (Figure 6).
IL-8 has also been shown to function as a trophic
factor in the maintenance of normal neuronal pop-
ulations and promotion of neuron survival (Araujo
and Cotman, 1993; Limatola et al, 2000; Horuk et al,
1997; Xia et al, 1997). For example, IL-8 enhances
survival of rat hippocampal neurons through interac-
tions with glial-derived neurotrophic factor (GDNF)
(Araujo and Cotman, 1993). Furthermore, glial cell-
derived IL-8 has been reported to modulate cholin-
ergic septal neuron excitability by closing calcium
channels via G-protein signaling (Puma et al, 2001).
The ability of IL-8 to produce rapid calcium cur-
rent reductions in neurons expressing CXCR1 and
CXCR2 points to a trophic role for IL-8 in prevent-
ing excitotoxic neuronal death (Murdoch and Finn,
2000) (Figure 6). Moreover, the rat chemokine GRO-
B, which is closely related to human IL-8 and shares
the CXCR1 and -2 receptors, has an antiapoptotic
effect on cultured cerebellar granular cells indi-
rectly by mediating signaling of the non—N-methyl-
D-aspartate (NMDA) alpha-amino-3-hydroxyl-5-
methyl-4-isoxazolepropionic acid (AMPA) receptor
(Limatola et al, 2000). In addition to its diverse
roles in neuronal survival, IL-8 is also an important
receptor-mediated stimulator of angiogenesis (Koch
et al, 1992) and monocyte adherence (Gerszten et al,
1999) (Baggiolini et al, 1994).



IL-8 interactions with HIV promote
viral replication

HIV Tat stimulates the production of IL-8 and GRO-«
by T cells and macrophages (Lane et al, 2001a, 2001b)
(Figures 5 and 6) and as a result, in HIV patients, lev-
els of IL-8 are elevated both in vivo in the sera and
in vitro in HIV-infected cells (Denis and Ghadirian,
1994; Matsumoto et al, 1993; Mori et al, 1995, 1998).
In turn, IL-8 and GRO-« then stimulate HIV-1 repli-
cation (Lane et al, 2001b). GRO-« is also a CXC
chemokine with 43% amino acid identity to IL-8
and ligates CXCR2 (Baggiolini et al, 1994). Interest-
ingly, unlike CXCR4, neither CXCR1 nor CXCR2 func-
tion as coreceptors for HIV-1 (D’Souza et al, 2000).
Striking similarities between the cell signaling ac-
tivities of HIV Tat (Figure 5) and IL-8 (Figure 6)
may provide clues as to how host/pathogen com-
ponents interact to mediate neuronal cell fate in
HIV infection (Figure 5). For example, IL-8 pre-
vents cell death via regulation of glutamate receptors
that are implicated in the neurotoxic effects of Tat
and, effects of Tat (Figure 6). The HIV Tat protein
potentiates NMDA-mediated neurotoxicity by in-
creasing intracellular calcium release and uptake of
extracellular calcium uptake in rat hippocampal neu-
rons and in rat cortical neurons via the G-protein
pathway (Nath et al, 1996; Haughey et al, 2001; Perez
et al, 2001) (Figure 6). It is possible that IL-8 protects
against Tat toxicity by reducing intracellular calcium.
Another example of growth factor neuroprotec-
tion against NMDA-mediated excitotoxic neurode-
generation is that GDNF and neublastin (NBN)
(also known as artemin) protect hippocampal neu-
rons against excitotoxic damage (Bonde et al,
2000). Members of the GDNF family of neu-
rotrophins support survival of dopaminergic neu-
rons in the substantia nigra and spinal and facial
motor neurons (Hamilton et al, 2001; Saarma and
Sariola, 1999). Like VEGF, bFGF, and HIV Tat, GDNFs
bind to heparin sulfate proteoglycans found both
in the extracellular matrix and on the cell surface.
Hamilton ef al (2001) point to the significance of hep-
arin receptor binding in relation to the use of growth
factors to enhance dopaminergic metabolism in neu-
rodegenerative diseases by emphasizing the complex
network of cross-talk among growth factors, NI com-
ponents, and viral proteins on neurodegeneration.
Although Kaposi sarcoma (KS) is rarely reported
to affect the brain microvasculature, signaling inter-
actions occurring during HIV-related KS provide a
noteworthy example of viral protein manipulation of
host immune response and growth factor-mediated
defense strategies. HIV Tat mimics the effect of VEGF
on endothelial cells via PAF-1 synthesis, activates
the angiogenic process by binding to integrin recep-
tors, and acts with bFGF to promote endothelial cell
growth and angiogenesis (Scheidegger et al, 2001;
Del Sorbo et al, 2001; Albini et al, 1996; Barillari et al,
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1999) (Figure 5). Moreover, in recent reports, IL-8 has
been presented as a key player in crosstalk between
the HIV Tat protein and modulation of angiotrophic
factors such as bFGF, VEGF, and endothelin-1 (Koch
etal, 1992; Gershengorn et al, 1998) (Figures 5 and 6).
Interestingly, endothelin-1, a cytokine that plays a
role in vasodilation, vasoconstriction, and cell pro-
liferation, is elevated in the spinal fluid of patients
with HIVE and may contribute to its pathogenesis
(Rolinski et al, 1999; Zidovetzki et al, 1999). Fur-
thermore, the G-protein—coupled receptor of KS her-
pes virus (KSHV, also known as HHV-8) has striking
sequence and structural similarity to IL-8 receptors
CXCR1 and -2 (Cesarman et al, 1996; Guo et al, 1997).
KSHYV induces NF-«B that in turn stimulates IL-8 se-
cretion (Shepard et al, 2001). In this regard, IL-8 and
several CXC chemokines containing the N-terminal
Glu-Leu-Arg (ELR) sequence function as angiogenic
factors (Koch et al, 1992; Belperio et al, 2000).

In summary, the role of IL-8 during HIV infection of
the brain is complex and involves the induction of an-
giogenic factors (Figure 5) with which Tat synergizes
or directly mimics (Figure 6). IL-8 also functions as
an autocrine factor, is induced by Tat, and promotes
HIV replication via stimulation of the CXCR2 recep-
tor to influence G-coupled calcium channel regula-
tion (Figure 6). Communication among angiotrophic
and neurotrophic factors, IL-8, and Tat in neural fit-
ness during HIV infection of the CNS is complex and
the majority of data support interactions among these
components in determining cell fate.

Role of FGF1 and -2 in HIVE

As described in the previous section, trophic factors
play an important role in the pathogenesis of viral
encephalitis by regulating the NI response, protect-
ing the neurons against toxins, and modulating vi-
ral replication. In addition, more recent studies have
shown that trophic factors interact with viral pro-
teins and chemokines in regulating the permeability
of the BBB and in the process of angiogenesis in re-
sponse to CNS damage (Arese et al, 2001; Persidsky
et al, 2001; Salcedo et al, 1999). Among the trophic
factors involved in viral encephalitis, special atten-
tion has been placed on the role of FGF in the pro-
gression of these disorders. The FGF family includes
more than 10 members of heparin-binding proteins
(Klint and Claesson-Welsh, 1999). Of interest in the
brain are FGF1 (acidic, aFGF), which is produced by
neurons (Figure 7A-D) and is primarily neurotrophic
(Figure 7E-H), and FGF2 (basic, bFGF), which is pro-
duced by glial cells (Figure 8A-D) and is angiotrophic
(Walicke and Baird, 1988; Eckenstein, 1994; Klint
and Claesson-Welsh, 1999) (Figure 8E-H).
Fibroblast growth factors maintain a broad
range of neurons, including those selectively vulner-
able to virally derived factors (Abe and Saito, 2001;



Trophic factors, immunity, and viral infection of CNS

632 D Langford and E Masliah

HIVE-INI)- HIVE-/ND+ HIVE+ND+

HIVE+ND-

human brain
frontal cortex

-‘ fetal brain
* 4 primary ncuron
¢ cultures

Figure 7 FGF1 protects neuronal cells against HIV-mediated toxicity. Panels A-D: Sections from human frontal cortex were immunos-
tained with an antibody against FGF1 and analyzed with a laser scanning electron microscope. Panels E-H: Human fetal neurons were
treated with or without FGF1 and gp120 and analyzed with a phase contrast microscope. A: In patients without HIVE or neurodegenera-
tion, there were low levels of FGF1 expression. B: In patients without HIVE but with neurodegeneration, neuronal FGF1 expression levels
were reduced. C: In patients with HIVE but no neurodegeneration, FGF1 expression levels were elevated. D: In patients with HIVE and
neurodegeneration, levels of FGF1 were reduced. E: Normal appearance of human cortical neurons under basal conditions. F: Treatment
with gp120 (25 nM, 6 days) resulted in cell damage. G: Treatment with FGF1 (20 nM, 24 h) promoted neurite outgrowth. H: Pretreatment
with FGF1 prevented gp120-mediated toxicity.

Everall et al, 2001; Thorns and Masliah, 1999). Fur-
thermore, they sustain the integrity of the BBB and
levels are altered in patients with HIVE (Boven et al,
1999; Everall et al, 2001). Consequently, their poten-
tial value in the treatment of neurological disorders is
under intense consideration. This is important for pa-
tients with AIDS because neurocognitive alterations
in this population continue to be a significant prob-
lem (Grant et al, 1995; Dore et al, 1999; Starace et al,
1998; McArthur et al, 1993). However, to date there
are no therapeutic strategies targeted at protecting
the CNS and preventing neuronal damage and death
due to HIV infection. During HIV infection, patho-
logically, the brain is affected by a spectrum of in-
flammatory changes (Budka et al, 1991; Tyor et al,

1992), dendritic and synaptic damage (Masliah et al,
1997; Everall et al, 1999), and neuronal loss (Everall
et al, 1993). Increasing viral load in the CNS is as-
sociated with worsening neuronal damage, and cor-
relates with the early onset of cognitive impairment
(Masliah et al, 1997; Everall et al, 1999). However,
the relationship among cognitive impairment, HIVE,
and neurodegeneration is complex because not all
patients with HIVE show cognitive impairment and
neurodegeneration (ND) (Wiley and Achim, 1994).
This phenomenon might indicate that the latter group
of individuals (HIVE+/ND-) has the capacity to pro-
duce neurotrophic factors able to protect neurons
against the deleterious effects of HIV. Supporting this
possibility, recent studies have shown that levels
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Figure 8 FGF2 protects microvasculature against HIV-mediated toxicity. Panels A-D: Sections from human frontal cortex were immunos-
tained with an antibody against FGF2 and analyzed by bright field microscopy. Panels E-H: HUVECs were treated with or without FGF2
and gp120 and analyzed with a phase contrast microscope. A: In patients without HIVE or endothelial cell damage, there were low levels
of FGF2 expression. B: In patients without HIVE but with endothelial cell damage, FGF2 expression levels were reduced. C: In patients
with HIVE but without endothelial cell damage, FGF2 levels were elevated. D: In patients with HIVE and endothelial cell damage, levels
of FGF2 were reduced. E: Normal appearance HUVECs under basal conditions. F: Treatment with gp120 (25 nM, 24 h) resulted in cell
damage. G: Treatment with FGF2 (20 nM, 24 h) promoted HUVEC proliferation. H: Pretreatment with FGF2 prevented gp120-mediated
toxicity. HUVECs, human umbilical vein endothelial cells; ECD, endothelial cell damage.



of FGF are increased in HIVE patients with pre-
served neuronal architecture and that this trophic
factor protects primary cultured neurons from the
neurotoxic effects of HIV gp120 (Everall et al, 2001)
(Figure 7). Moreover, in patients with KS, high lev-
els of FGF2 (Faris et al, 1998) produced by the tu-
mor are associated with a decreased risk for neuronal
degeneration and neurological impairment (Liestael
et al, 1998). In contrast, neurodegeneration in pa-
tients with HIV is associated with low levels of FGF1
expression (Everall et al, 2001) (Figure 7). Although
mechanisms by which FGF1 might be neuroprotec-
tive against HIV are not completely clear, several pos-
sibilities have been proposed. There may be antag-
onism of excitatory amino acid toxicity (Inklestein
et al, 1993) by regulating expression of glutamate
receptors because it is postulated that gp120 inter-
acts with NMDA/glutamate receptors (Dreyer et al,
1990). On the other hand, it has recently been shown
that FGF down-modulates cell surface expression of
CXCR4 receptors, which are coreceptors for HIV cel-
lular entry (Sanders et al, 2000). Furthermore, CXCR4
expression by neurons appears to be an important
mediator of gp120 neurotoxicity (Kaul and Lipton,
1999), providing another example of a trophic factor
that interacts with the NIR during the progression of
viral encephalitis. Alternatively, the signaling path-
way downstream from FGFR1 may mediate neuro-
protective effects of FGF1 (Hashimoto et al, 2002). In
this regard, FGF1 binds to FGFR1, leading to dimer-
ization of the receptor, with phosphorylation and ac-
tivation of tyrosine kinase (Klint et al, 1999). There is
an array of signal transduction molecules activated by
the FGFR1 dimer, including phospholipase G-y (PLC-
), the Src family kinase, Src homology phosphatase
type-2 (SHP-2), focal adhesion kinase (FAK), phos-
phatidylinositol 3’ kinase (PI3 kinase), FGF receptor
substrate 2 (FRS2), which is a recently characterized
90-kDa adaptor molecule, and Grb-2, which activates
Ras (Klint and Claesson-Welsh, 1999; Williams and
Doherty, 1999). FGF induces sustained activation of
MAP kinases ERK1 and -2, which are downstream of
Ras in the pathway (Klint et al, 1999). MAP kinase
activation may be important in mediating a number
of neurotrophic effects, although independent path-
ways may also be activated (Renaud et al, 1996). Fur-
thermore, FGF binding activates both the p90 (rsk)
and the PI3K/AKT pathways, which in turn stabi-
lize membrane-associated S-catenin (Maggirwar et al,
1999). Degradation of 8-catenin is promoted by glyco-
gen synthase kinase-38 (GSK38) and FGF inhibits en-
dogenous GSK3p, possibly by p90 (rsk) (Torres et al,
1999) or the PI3K/Akt signaling cascade. Although
activation of GSK38 might lead to cell death, inhi-
bition of this enzyme is associated with cellular sur-
vival (Pap and Cooper, 1998). Therefore, FGF1 might
be neuroprotective via regulation of GSK38 pathway
(Hashimoto et al, 2002) (Figure 9A). Further support-
ing a role of this pathway in HIVE, a recent study
showed that FGF1 alters GSK3p activity and that in
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Figure9 (A)FGF1 binding to FGFR activates the PI3K/AKT path-
way in neuronal cells. Activation of AKT leads to phosphorylation
and inactivation of GSK38. GSK38 inactivation allows B-catenin
translocation into the nucleus, thereby promoting cell survival.
FGF1 treatment protects neurons from gp120-mediated toxicity.
(B) FGF2 binding to FGFR activates PI3K/MAPK signaling in
HUVEGs. PI3K stimulation results in both PKC-dependent and
-independent MAPK activation and ERK phosphorylation. FGF2
treatment protects HUVEC from gp120-mediated toxicity.

HIV-infected cells the transactivator molecule Tat is
capable of inducing GSK38 (Maggirwar et al, 1999).
In summary, FGF1 might be neuroprotective against
HIV viaregulation of intracellular signaling pathways
important for cell survival (Figure 9A).

Another aspect through which FGF may regu-
late progression of viral encephalitis and the NIR
is in maintaining BBB integrity, which is critical
to prevent the passage of potentially harmful fac-
tors, such as pathogens or toxins, into the brain
(Langford and Masliah, 2001). During the progres-
sion of CNS infectious disease, pathogens might
gain access to the brain by compromising the in-
tegrity of BBB (Achim et al, 1993; Langford and
Masliah, 2001; Persidsky et al, 2000). In the course
of AIDS, HIV is proposed to enter the brain at early
stages, disrupting the components of the BBB, re-
sulting in a chronic state of inflammation known
as HIV encephalitis (Zink et al, 1999). HIVE is
characterized by the presence of HIV in the brain,
the formation of multinucleated giant cells and
microglial nodules, astrogliosis, and myelin pallor
(Budka, 1991), the combined effects of which could
result in cognitive impairment (Wiley et al, 1999;
Wiley and Achim, 1994). Endothelial cells of the BBB
are the first point of contact between viral products
and are the front line of defense against viral entry
into the CNS. Alterations in signaling between com-
ponents of the BBB with either HIV proteins or fac-
tors produced in response to HIV infection, such as
cytokines and chemokines, disrupt BBB integrity and
result in compromise, thereby promoting transmigra-
tion of activated monocytes or HIV-infected cells into
the brain (Persidsky et al, 2000). Toxic products re-
leased from HIV-infected cells, such as gp120, Tat,
or Nef, together with cytokines and chemokines from
activated monocytes, can act to increase BBB perme-
ability (Sporer et al, 2000; Park et al, 2001; Weiss
etal,1999; Woodman et al, 1999). For example, gp120
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has been shown to promote apoptosis of human
umbilical vein endothelial cells (HUVECs) (Huang
et al, 2001; Ullrich et al, 2000) (Figure 8) and to al-
ter the BBB in transgenic mice (Toneatto et al, 1999),
whereas other factors, such as growth factors, may
work to preserve BBB integrity. In this context, FGF2
is of particular interest for several reasons. FGF2 is
produced by astrocytes that are in close proximity to
endothelial cells of the BBB (Figure 8) and among the
known astrocyte-derived growth factors, and FGF2
is the only one that represents the signaling actions
of astrocytes to the BBB (Klint et al, 1999; Sobue
et al, 1999). Of the four FGF receptors, FGFR1 is
mainly expressed on neurons and endothelial cells,
whereas FGFR2 and FGFR3 are found on glial cells
(Chambers et al, 2000; Clarke et al, 1993; Dodart
et al, 2000; Eckenstein, 1994; Klint and Claesson-
Welsh, 1999). FGF2, which binds to FGFR1, has been
shown to exhibit a wide range of angiotrophic effects
(Klint et al, 1999; Sobue et al, 1999) and promotes
the survival of cortical and hippocampal neurons
(Morrison et al, 1986; Sendtner et al, 1991; Walicke
and Baird, 1988). During the progress transmigra-
tion of HIV macrophages across the BBB, activated
cells secrete cytokines and chemokines which inter-
act with astroglial cells of the BBB to promote FGF2
production (Langford and Masliah, 2001). Possible
candidate cytokines and chemokines include IL-18
and TNF-«, bringing full circle the crosstalk among
virus, NIR, and trophic factors. It has been shown
that cytokines act on specific astroglial cell surface
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